

CAN Driver and Library API for Linux

User Manual

PCAN Driver for Linux v8

Document version 3.2.1 (2017-10-23)

PCAN Driver for Linux v8 – User Manual

2

Relevant products

Product Name Version Part number

PCAN Driver for Linux 8.x.x not applicable

All product names mentioned in this document may be the trademarks or registered trademarks of their respective companies.

They are not explicitly marked by “™” or “®”.

Copyright © 2017 PEAK-System Technik GmbH

Duplication (copying, printing, or other forms) and the electronic distribution of this document is only allowed with explicit

permission of PEAK-System Technik GmbH. PEAK-System Technik GmbH reserves the right to change technical data without prior

announcement. The general business conditions and the regulations of the license agreement apply. All rights are reserved.

PEAK-System Technik GmbH

Otto-Roehm-Strasse 69

64293 Darmstadt

Germany

Phone: +49 (0)6151 8173-20

Fax: +49 (0)6151 8173-29

www.peak-system.com

info@peak-system.com

Document version 3.2.1 (2017-10-23)

http://www.peak-system.com/
mailto:info@peak-system.com

PCAN Driver for Linux v8 – User Manual

3

Contents

1 Disclaimer 4

2 Introduction 5

2.1 Features 5

2.2 System Requirements 6

2.3 Scope of Supply 6

3 Installation 7

3.1 Build Binaries 7

3.2 Install Package 9

3.3 Configure Software 9

3.4 Configure Non-PnP-Hardware 10

4 Usage of the Driver 12

4.1 Load Driver 12

4.2 Udev Rules 13

4.3 /proc Interface 17

4.4 /sysfs Interface 18

4.5 lspcan Tool 21

4.6 read/write Interface 23

4.7 test Directory 25

4.7.1 receivetest 26
4.7.2 transmitest 27
4.7.3 pcan-settings 28
4.7.4 bitratetest 29
4.7.5 pcanfdtst 29

4.8 netdev Mode 33

4.8.1 assign Parameter 33
4.8.2 ifconfig/iproute2 34
4.8.3 can-utils 35

5 Developer Guide 37

5.1 chardev Mode 37

5.1.1 CAN 2.0 API 38
5.1.2 CAN FD API 42

5.2 netdev Mode 55

PCAN Driver for Linux v8 – User Manual

4

1 Disclaimer

The provided files are part of the PCAN Driver for Linux package.

This is free software; you can redistribute it and/or modify it under the terms of the GNU General Public

License as published by the Free Software Foundation; either version 3 of the License, or (at your option)

any later version.

The software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without

even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with the software package. If

not, see https://www.gnu.org/licenses/.

Important note: It is strictly prohibited to use the intellectual property from the provided source code

for developing or producing a compatible hardware. All rights are reserved by PEAK-System Technik

GmbH.

https://www.gnu.org/licenses/

PCAN Driver for Linux v8 – User Manual

5

2 Introduction

With the PCAN Driver for Linux, you can use CAN 2.0 and, since v8, CAN FD hardware products from

PEAK-System under Linux-based systems. Even if the use of Linux 2.4 kernels is declining, the canonical

age of the driver ensures compatibility with some versions of this kernel line and with older PEAK-

System hardware products.

The driver is also compatible with the latest versions of well-known real-time (RT) extensions like

Xenomai1 and RTAI2 , by interfacing to the common “Real Time Driver Mode” model.

Historically, the PCAN Driver for Linux provides an application programming interface called chardev by

implementing the character mode device drivers system calls (open, read, write, close, poll, ioctl). Since

version 20070306_n, the driver also provides a netdev interface which, by integrating the Kernel

SocketCAN network sub-layer, provides applications with access to the PEAK-System CAN channels via

the socket interface of the Linux kernel. The choice of the selected interface is exclusively done when

building the driver; the driver cannot run offering both interfaces at the same time.

Note: Since the Linux kernel v3.6, PEAK-System has worked to include the support of their most-

used PC CAN interfaces in the mainline Kernel. Thus, if you plan to get access to the CAN bus with a

PC CAN interface made by PEAK-System from a socket-based application, there is no need of

installing this PCAN Driver for Linux package anymore. The so-called netdev interface is however

kept for backward compatibility.

Version 8 of the PCAN Driver for Linux is a major evolution since it mainly includes the support of the

new CAN FD specification. Because of the new features CAN FD proposes, the historical chardev API has

had to evolve, too. Time has come for PCAN to propose a more modern and scalable new chardev

interface, while the “old” good one is obviously always supported.

The package is always evolving, because of the constant support of some new hardware products made

by PEAK-System, some new versions of tools and Kernels, or because of some bug fixing. The latest

version can be downloaded from the PEAK-System website:

http://www.peak-system.com/fileadmin/media/linux/index.htm

2.1 Features

 Support of all CAN 2.0 a/b and CAN FD hardware products made by PEAK-System

 Support of all 2.6.x, 3.x, and 4.x Linux Kernels in 32 and 64-bit environments

 DESTDIR and cross-compilation supported

 Udev system support

 Enhanced sysfs integration

 Optimized character mode device driver interface (chardev) supporting CAN 2.0 as well as CAN

FD standard and multiple messages transfers between applications and the driver

 SocketCAN device driver interface (netdev) supporting CAN 2.0 as well as CAN FD new features,

with enhanced NETLINK integration (ip link support)

1 Website Xenomai: https://xenomai.org/

2 Website RTAI: https://www.rtai.org/

http://www.peak-system.com/fileadmin/media/linux/index.htm
https://xenomai.org/
https://www.rtai.org/

PCAN Driver for Linux v8 – User Manual

6

 Real-time Linux extensions like Xenomai 2.6 and RTAI 4.x supported by the driver, as well as by

the user space library and the test and examples applications (chardev interface only)

 Full binary compatibility with existing CAN 2.0 chardev applications that run over older versions

of the driver (7.x and older)

2.2 System Requirements

 Linux-based system running a 32 or a 64-bit Kernel

 PC CAN interface from PEAK-System

 make, gcc

 The kernel headers (or Linux headers) package of the running Linux or the sources tree of a cross-

compiled Kernel

 g++ and libstdc++

 libpopt-dev package

Note: The g++ compiler as well as the libpopt-dev package are only required for building some user

space applications from the test directory.

2.3 Scope of Supply

 PCAN Driver for Linux installation including

 device driver module sources and Makefile

 user libraries sources and Makefile

 test and tools applications sources and Makefile

 Udev rules

 Documentation (this user manual) in PDF format

PCAN Driver for Linux v8 – User Manual

7

3 Installation

The PCAN Driver for Linux is an out-of-tree driver module, and because of the GPL, it is provided in a

(compressed) tarball package including the source files of the driver as well as the user libraries and

some test utilities and tools (see 2.3 Scope of Supply sur la page 6).

This chapter covers the setup of the whole driver package under non-RT and RT Linux systems (root

privileges are required for the installation part). Also cross-compilation options are explained.

3.1 Build Binaries

Do the following to install the package:

1. Untar the compressed tarball file from your $HOME (for example) directory:

$ tar –xzf peak-linux-driver-X.Y.Z.tar.gz

$ cd peak-linux-driver-X.Y.Z

2. Clean the world:

$ make clean

To build non-real time binaries with default configuration:

$ make

Note: This behavior is new from v8.x of the driver! In former versions, the global make command did

build enabling the netdev interface rather than the chardev one. The main reason of that change is

that a great number of PEAK-System CAN hardware products are now natively supported by the

mainline kernel as SocketCAN interfaces3. Thus, driver users are supposed to prefer using the

chardev interface instead. But of course, the netdev interface can always be selected by rebuilding

the driver (only) with:

$ make –C driver NET=NETDEV_SUPPORT

To build real-time binaries running in a Xenomai kernel:

$ make RT=XENOMAI

Note: Since driver version 8.2, you can also build the Xenomai binaries with:

$ make xeno

3 Kernel code: http://lxr.free-electrons.com/source/drivers/net/can/usb/peak_usb/pcan_usb_core.c?v=3.4

http://lxr.free-electrons.com/source/drivers/net/can/usb/peak_usb/pcan_usb_core.c?v=3.4

PCAN Driver for Linux v8 – User Manual

8

To build real-time binaries running in a RTAI kernel:

$ make RT=RTAI

Note: Since driver version 8.2, you can also build the RTAI binaries with:

$ make rtai

Note: Selecting one of the above real-time compilations also removes the support of some of the

non-RT PC CAN interfaces (like the USB adapters, for example).

To cross-compile binaries:

$ make KERNEL_LOCATION=/where/are/the/kernel/headers

Making something from the package’s root directory recursively makes this thing into:

1. the driver directory,

2. the lib directory, and

3. the test directory.

It is equivalent to the following 3 commands:

$ make –C driver

$ make –C lib

$ make –C test

Making the 32-bit version of the library:

Since driver version 8.5, the 32-bit version of the libpcan library is automatically built (and installed)

when running a 64-bit Kernel if the current C compiler is able to.

Note: The gcc-multilib package must be installed.

The default configuration of the PCAN Driver for Linux in non-RT configuration is to handle the support of

all PC CAN interfaces. However, in order to save memory or to fix some cross-compilation and/or loading

issues, it is possible to remove the support of some of these interfaces. The driver's Makefile handles the

following set of switches from the make command line:

Variable Value Description

DNG DONGLE_SUPPORT Include the support of the parallel port CAN interfaces from PEAK-System

in the driver (default)

NO_DONGLE_SUPPORT Remove the support of the parallel port CAN interfaces from the driver

USB USB_SUPPORT Include the support of the USB CAN interfaces from PEAK-System in the

driver (default)

NO_USB_SUPPORT Remove the support of the USB CAN interfaces from the driver

PCI PCI_SUPPORT Include the support of the PCI/PCIe CAN interfaces from PEAK-System in

the driver (default)

NO_PCI_SUPPORT Remove the support of the PCI/PCIe CAN interfaces from the driver

PCIEC PCIEC_SUPPORT Include the support of the ExpressCard CAN interfaces from PEAK-System

in the driver (default)

NO_PCIEC_SUPPORT Remove the support of the ExpressCard CAN interfaces from the driver

PCAN Driver for Linux v8 – User Manual

9

Variable Value Description

ISA ISA_SUPPORT Include the support of the ISA/PC104 CAN interfaces from PEAK-System in

the driver (default)

NO_ISA_SUPPORT Remove the support of the ISA/PC104 CAN interfaces from the driver

PCC PCCARD_SUPPORT Include the support of the PCCard CAN interfaces from PEAK-System in the

driver (default)

NO_PCCARD_SUPPORT Remove the support of the PCCard CAN interfaces from the driver

Table 1: Supported PC CAN interfaces switches

For example, to build the driver without including the support of neither the PCAN-Dongle nor the

PCAN-PC Card CAN interfaces:

$ make –C driver DNG=NO_DONGLE_SUPPORT PCC=NO_PCCARD_SUPPORT

3.2 Install Package

Once binaries are built, do the following to install the package:

1. Be sure to be in the driver package root directory:

$ cd peak-linux-driver-X.Y.Z

2. Install everything (root privileges are required):

a) On Debian-based systems, users can use the sudo command:

$ sudo make install

b) Otherwise, installation is done with:

$ su -c "make install"

The above setup will build and install the driver, the user libraries, and the test programs on the running

system.

3.3 Configure Software

The PCAN Driver for Linux runs with some default settings. Some of them can be changed by passing

parameters to the module when it is loaded:

Parameter Type Description

type List of characters strings, separated by “,”

(comma).

Gives the list of (maximum) 8 PC CAN interfaces that can't be

detected by the plug-and-play system. Known types are:

type PC CAN interface

isa ISA and PC/104

sp Standard parallel port

epp Enhanced parallel port

PCAN Driver for Linux v8 – User Manual

10

io List of hexadecimal values, separated

by”,” (comma).

Gives the list of I/O ports to use to dialog with the corresponding PC

CAN interface (see type).

irq List of decimal values, separated by “,”

(comma).

Gives the list of IRQ levels to connect to dialog with the

corresponding PC CAN interface (see type).

btr0btr1 Hexadecimal value. Change the default (nominal) bitrate value set to every CAN/CAN FD

channel when it is opened. The hexadecimal value is interpreted as a

BTR0BTR1 value (see SJA1000 specifications). If this parameter is not

provided when the module is loaded, the default bitrate value is 0x1c

(500 kbit/s).

bitrate Numeric value. An ending k is interpreted

as factor 1,000, while an ending M is

interpreted as factor 1,000,000.

Change the default (nominal) bitrate value set to every CAN/CAN FD

channel when it is opened. If this parameter is not provided when the

module is loaded, the default bitrate value is 0x1c (500 kbit/s). See

also the note below.

dbitrate Numeric value. An ending k is interpreted

as factor 1,000, while an ending M is

interpreted as factor 1,000,000.

Change the default data bitrate value set to every CAN FD channel

when it is opened. If this parameter is not provided when the module

is loaded, the default data bitrate value is 2,000,000 (2 Mbit/s).

assign Characters string. Change the default name assignment between PCAN and SocketCAN

layer (see 4.8.1 assign Parameter sur la page 33). This parameter is

only used when the netdev interface is selected.

Table 2: Driver module parameters

Note: The bitrate= parameter has changed since v8.x of the driver. In previous versions, this para-

meter allowed to change the default nominal bitrate, but with following the coding format of the

BTR0BTR1 SJA1000 register only.

In order to ensure the best backward compatibility with the existing configurations, the bitrate=

parameter is now parsed as follows:

 If the two first characters of the given value is 0x or 0X and if the hexadecimal value is smaller

than 65536, then the value is always interpreted as a BTR0BTR1 bitrate specification (as the driver

did in previous versions).

 Otherwise, and if the value is obviously a numeric value, then it is used as a bit-per-second (bit/s)

bitrate specification.

These parameters and their values can be given on the insmod command line or can be written in the

/etc/modprobe.d/pcan.conf file. The system administrator has to edit this file, then to uncomment

the options pcan line, and to write his own settings.

3.4 Configure Non-PnP-Hardware

Note: This paragraph only concerns the users of some non-plug-and-play PC CAN interfaces (like the

PCAN-ISA and PC/104 PC CAN interfaces family). The configuration of the driver for the PCI/PCIe and

USB PC CAN interfaces families is entirely handled by the system.

When using some non-plug-and-play PC CAN interfaces, the driver has to be informed of the IRQs and

I/O ports configured for these boards (see the provided hardware reference and the corresponding jum-

pers' usage). The installation procedure of the PCAN Driver for Linux has already created a configuration

text file which enables to define some optional arguments that are passed to the driver (see 3.3 Configure

Software sur la page 9), when it is loaded.

For example, if the Linux host is equipped with a two channels ISA PC CAN interface board, and if IRQ 5

(resp. IRQ 10) and I/O port 0x300 (resp. 0x320) is the configuration selected by the dedicated jumpers on

the board, then the /etc/modprobe.d/pcan.conf file has to be changed like this:

PCAN Driver for Linux v8 – User Manual

11

$ sudo vi /etc/modprobe.d/pcan.conf

PCAN - automatic made entry, begin --------

if required add options and remove comment

options pcan type=isa,isa irq=10,5 io=0x300,0x320

install pcan /sbin/modprobe --ignore-install pcan

PCAN - automatic made entry, end ----------

The standard assignments for ISA and PC/104 PC CAN interfaces are (io/irq): 0x300/10, 0x320/5. The

standard assignments for the PCAN-Dongle in SP/EPP mode are (io/irq): 0x378/7, 0x278/5.

PCAN Driver for Linux v8 – User Manual

12

4 Usage of the Driver

Once installed, and if the Udev system is running on the target system, the driver is automatically loaded

by the system at the next boot for internal PC CAN interfaces, like the PCI/PCIe boards, or when the

external PC CAN interface (like the USB adapters) is plugged into the system.

4.1 Load Driver

The driver, however, can be loaded without rebooting the system by asking the system to probe for the

PCAN module (root privileges are required):

$ sudo modprobe pcan

Note: The modprobe system command manages to load all the other modules the driver depends

on. When using insmod instead, you must load all of these modules manually:

$ modinfo pcan.ko | grep -e "^depends:"

depends: pcmcia,parport,i2c-algo-bit

$ sudo modprobe pcmcia parport i2C-alog-bits

$ sudo insmod pcan.ko

The driver is reasonably verbose for the kernel: it logs one or several messages in the kernel logs buffer

for each PC CAN interface it enumerates. Next, it will save messages only when something wrong has

been detected.

PCAN Driver for Linux v8 – User Manual

13

Here are the messages it logs when it just has been loaded, for example:

$ dmesg | grep pcan

[24612.510888] pcan: Release_YYYYMMMDD_n (le)

[24612.510894] pcan: driver config [mod] [isa] [pci] [pec] [dng] [par] [usb] [pcc]

[24612.511057] pcan: uCAN PCI device sub-system ID 14h (4 channels)

[24612.511125] pcan 0000:01:00.0: irq 48 for MSI/MSI-X

[24612.511140] pcan: uCAN PCB v4h FPGA v1.0.5 (design 3)

[24612.511146] pcan: pci uCAN device minor 0 found

[24612.511148] pcan: pci uCAN device minor 1 found

[24612.511150] pcan: pci uCAN device minor 2 found

[24612.511153] pcan: pci uCAN device minor 3 found

[24612.516206] pcan: pci device minor 4 found

[24612.516230] pcan: pci device minor 5 found

[24612.516258] pcan: pci device minor 6 found

[24612.516280] pcan: pci device minor 7 found

[24612.516335] pcan: isa SJA1000 device minor 8 expected (io=0x0300,irq=10)

[24612.516369] pcan: isa SJA1000 device minor 9 expected (io=0x0320,irq=5)

[24612.516999] pcan: new high speed usb adapter with 2 CAN controller(s) detected

[24612.517237] pcan: PCAN-USB Pro FD (01h PCB01h) fw v2.1.0

[24612.517244] pcan: usb hardware revision = 1

[24612.517605] pcan: PCAN-USB Pro FD channel 1 device number=30

[24612.517729] pcan: usb device minor 0 found

[24612.517732] pcan: usb hardware revision = 1

[24612.518231] pcan: PCAN-USB Pro FD channel 2 device number=31

[24612.518354] pcan: usb device minor 1 found

[24612.522469] pcan: new usb adapter with 1 CAN controller(s) detected

[24612.522491] pcan: usb hardware revision = 28

[24612.579450] pcan: PCAN-USB channel device number=161

[24612.579453] pcan: usb device minor 2 found

[24612.579487] usbcore: registered new interface driver pcan

[24612.586265] pcan: major 249.

The driver enumerates each PC CAN interface according to its type. By default, each type has the

following range of device minor numbers:

Hardware type Minor number range

PCI/PCIe [0 … 7]

ISA and PC/104 [8 … 15]

SP mode [16 … 23]

EPP mode [24 … 31]

USB [32 … 39]

PC-CARD [40 … 47]

Table 3: Device minor number ranges

4.2 Udev Rules

The Udev mechanism loads the non-RT driver when the system recognizes one of the devices it handles,

at boot time or when the hardware device is plugged into the system.

Note: No device nodes files are created when running the real-time version of the driver module

because it creates real-time (only) devices which are not connected in any way to the Udev system.

The installation of the driver package also adds some default rules to Udev, for helping the system to

create the device nodes that implement the CAN channels handled by the driver (see peak-linux-

PCAN Driver for Linux v8 – User Manual

14

driver-x.y.z/driver/udev/45-pcan.rules). By default, Udev creates one (character) device node

under the /dev directory per CAN/CAN FD channel. The name of this device node is made of:

 pcan prefix

 PC CAN interface bus type (pci, isa, usb …),

 fd suffix if the CAN channel is CAN-FD-capable

 unique minor number

For example:

$ ls -l /dev/pcan* | grep "^c"

crw-rw-rw- 1 root root 246, 8 févr. 3 14:59 /dev/pcanisa8

crw-rw-rw- 1 root root 246, 9 févr. 3 14:59 /dev/pcanisa9

crw-rw-rw- 1 root root 246, 4 févr. 3 14:59 /dev/pcanpci4

crw-rw-rw- 1 root root 246, 5 févr. 3 14:59 /dev/pcanpci5

crw-rw-rw- 1 root root 246, 0 févr. 3 14:59 /dev/pcanpcifd0

crw-rw-rw- 1 root root 246, 1 févr. 3 14:59 /dev/pcanpcifd1

crw-rw-rw- 1 root root 246, 2 févr. 3 14:59 /dev/pcanpcifd2

crw-rw-rw- 1 root root 246, 3 févr. 3 14:59 /dev/pcanpcifd3

crw-rw-rw- 1 root root 246, 35 févr. 3 15:24 /dev/pcanusb35

crw-rw-rw- 1 root root 246, 36 févr. 3 15:24 /dev/pcanusb36

crw-rw-rw- 1 root root 246, 32 févr. 3 14:59 /dev/pcanusbfd32

crw-rw-rw- 1 root root 246, 33 févr. 3 14:59 /dev/pcanusbfd33

crw-rw-rw- 1 root root 246, 34 févr. 3 14:59 /dev/pcanusbfd34

The Udev rules that the driver installs enable to create some symbolic links that give much more

information about the CAN channel:

1. Udev rules create one /dev/pcanX per CAN channel

2. Udev rules group CAN channels according to their PC CAN interface into the same subdirectory

whose name is made of the PC CAN interface product name

3. Udev default rules also create some other symbolic links if the CAN channel exports a devid

property (different from -1) under /sys (as USB devices are able to).

PCAN Driver for Linux v8 – User Manual

15

The example below demonstrates the complete list of /dev/pcan* nodes, symbolic links, and

subdirectories the Udev rules provided with the driver might create.

$ ls -l /dev/pcan*

lrwxrwxrwx 1 root root 10 févr. 3 14:59 /dev/pcan0 -> pcanpcifd0

lrwxrwxrwx 1 root root 10 févr. 3 14:59 /dev/pcan1 -> pcanpcifd1

lrwxrwxrwx 1 root root 10 févr. 3 14:59 /dev/pcan2 -> pcanpcifd2

lrwxrwxrwx 1 root root 10 févr. 3 14:59 /dev/pcan3 -> pcanpcifd3

lrwxrwxrwx 1 root root 11 févr. 3 14:59 /dev/pcan32 -> pcanusbfd32

lrwxrwxrwx 1 root root 11 févr. 3 14:59 /dev/pcan33 -> pcanusbfd33

lrwxrwxrwx 1 root root 11 févr. 3 14:59 /dev/pcan34 -> pcanusbfd34

lrwxrwxrwx 1 root root 9 févr. 3 15:24 /dev/pcan35 -> pcanusb35

lrwxrwxrwx 1 root root 9 févr. 3 15:24 /dev/pcan36 -> pcanusb36

lrwxrwxrwx 1 root root 8 févr. 3 14:59 /dev/pcan4 -> pcanpci4

lrwxrwxrwx 1 root root 8 févr. 3 14:59 /dev/pcan5 -> pcanpci5

lrwxrwxrwx 1 root root 8 févr. 3 14:59 /dev/pcan8 -> pcanisa8

lrwxrwxrwx 1 root root 8 févr. 3 14:59 /dev/pcan9 -> pcanisa9

crw-rw-rw- 1 root root 246, 8 févr. 3 14:59 /dev/pcanisa8

crw-rw-rw- 1 root root 246, 9 févr. 3 14:59 /dev/pcanisa9

crw-rw-rw- 1 root root 246, 4 févr. 3 14:59 /dev/pcanpci4

crw-rw-rw- 1 root root 246, 5 févr. 3 14:59 /dev/pcanpci5

crw-rw-rw- 1 root root 246, 0 févr. 3 14:59 /dev/pcanpcifd0

crw-rw-rw- 1 root root 246, 1 févr. 3 14:59 /dev/pcanpcifd1

crw-rw-rw- 1 root root 246, 2 févr. 3 14:59 /dev/pcanpcifd2

crw-rw-rw- 1 root root 246, 3 févr. 3 14:59 /dev/pcanpcifd3

crw-rw-rw- 1 root root 246, 35 févr. 3 15:24 /dev/pcanusb35

crw-rw-rw- 1 root root 246, 36 févr. 3 15:24 /dev/pcanusb36

crw-rw-rw- 1 root root 246, 32 févr. 3 14:59 /dev/pcanusbfd32

crw-rw-rw- 1 root root 246, 33 févr. 3 14:59 /dev/pcanusbfd33

crw-rw-rw- 1 root root 246, 34 févr. 3 14:59 /dev/pcanusbfd34

lrwxrwxrwx 1 root root 11 févr. 3 14:59 /dev/pcanusbpfd32 -> pcanusbfd32

lrwxrwxrwx 1 root root 11 févr. 3 14:59 /dev/pcanusbpfd33 -> pcanusbfd33

/dev/pcan-pci:

total 0

drwxr-xr-x 2 root root 80 févr. 3 14:59 0

/dev/pcan-pcie_fd:

total 0

drwxr-xr-x 2 root root 80 févr. 3 14:59 0

drwxr-xr-x 2 root root 80 févr. 3 14:59 1

/dev/pcan-usb:

total 0

drwxr-xr-x 2 root root 60 févr. 3 15:24 0

drwxr-xr-x 2 root root 60 févr. 3 15:24 1

lrwxrwxrwx 1 root root 12 févr. 3 15:24 devid=161 -> ../pcanusb35

/dev/pcan-usb_fd:

total 0

drwxr-xr-x 2 root root 60 févr. 3 14:59 0

lrwxrwxrwx 1 root root 14 févr. 3 14:59 devid=12345678 -> ../pcanusbfd34

/dev/pcan-usb_pro_fd:

total 0

drwxr-xr-x 2 root root 80 févr. 3 14:59 0

lrwxrwxrwx 1 root root 14 févr. 3 14:59 devid=2 -> ../pcanusbfd32

lrwxrwxrwx 1 root root 14 févr. 3 14:59 devid=31 -> ../pcanusbfd33

PCAN Driver for Linux v8 – User Manual

16

Here is the content of the subdirectories created by these Udev rules, one per PC CAN interface. The tree

representation provides a better way of showing which CAN channel is connected to which PC CAN

interface:

$ tree /dev/pcan-pci

/dev/pcan-pci

└── 0

 ├── can0 -> ../../pcanpci4

 └── can1 -> ../../pcanpci5

1 directory, 2 files

$ tree /dev/pcan-pcie_fd

/dev/pcan-pcie_fd

├── 0

│ ├── can0 -> ../../pcanpcifd0

│ └── can1 -> ../../pcanpcifd1

└── 1

 ├── can0 -> ../../pcanpcifd2

 └── can1 -> ../../pcanpcifd3

2 directories, 4 files

$ tree /dev/pcan-usb

/dev/pcan-usb

├── 0

│ └── can0 -> ../../pcanusb35

├── 1

│ └── can0 -> ../../pcanusb36

└── devid=161 -> ../pcanusb35

2 directories, 3 files

$ tree /dev/pcan-usb_fd

/dev/pcan-usb_fd

├── 0

│ └── can0 -> ../../pcanusbfd34

└── devid=12345678 -> ../pcanusbfd34

1 directory, 2 files

$ tree /dev/pcan-usb_pro_fd

/dev/pcan-usb_pro_fd

├── 0

│ ├── can0 -> ../../pcanusbfd32

│ └── can1 -> ../../pcanusbfd33

├── devid=2 -> ../pcanusbfd32

└── devid=31 -> ../pcanusbfd33

1 directory, 4 files

PCAN Driver for Linux v8 – User Manual

17

In the above configuration, a user application that wants to access to the CAN bus through the 2nd CAN

port of the PCAN-USB Pro FD plugged to the host will be able to open indifferently:

 /dev/pcanusbfd33

 /dev/pcan33

 /dev/pcan-usb_pro_fd/devid=31

 /dev/pcan-usb_pro_fd/0/can1

Note: With a properly configured and running Udev system, all of these devices files and directories

are generated on the fly. If the target non-RT system does not have a running Udev system, you

must create the device files manually each time after driver installation. The driver package provides

the shell script driver/pcan_make_devices for this. For example, to create a maximum of 2

devices of each type:

$ cd driver

$ sudo ./pcan_make_devices 2

4.3 /proc Interface

One of the first tests to do is to check whether the driver module is correctly loaded and runs as

expected. To so, read the /proc/pcan pseudo file.

Example:

$ cat /proc/pcan

*------------- PEAK-System CAN interfaces (www.peak-system.com) -------------

*------------- Release_YYYYMMDD_n (X.Y.Z) MMM DD YYYY HH:MN:SS --------------

*------------- [mod] [isa] [pci] [pec] [dng] [par] [usb] [pcc] --------------

*--------------------- XX interfaces @ major 249 found -----------------------

*n -type- -ndev- --base-- irq --btr- --read-- --write- --irqs-- -errors- status

 0 pcifd -NA- f8c21000 048 0x001c 00000000 00000000 00000000 00000000 0x0000

 1 pcifd -NA- f8c22000 048 0x001c 00000000 00000000 00000000 00000000 0x0000

 2 pcifd -NA- f8c23000 048 0x001c 00000000 00000000 00000000 00000000 0x0000

 3 pcifd -NA- f8c24000 048 0x001c 00000000 00000000 00000000 00000000 0x0000

 4 pci -NA- fdee0000 016 0x001c 00000000 00000000 00000000 00000000 0x0000

 5 pci -NA- fdee0400 016 0x001c 00000000 00000000 00000000 00000000 0x0000

 6 pci -NA- fdee0800 016 0x001c 00000000 00000000 00000000 00000000 0x0000

 7 pci -NA- fdee0c00 016 0x001c 00000000 00000000 00000000 00000000 0x0000

 8 isa -NA- 300 010 0x001c 00000000 00000000 00000000 00000000 0x0000

 9 isa -NA- 320 005 0x001c 00000000 00000000 00000000 00000000 0x0000

32 usbfd -NA- 3 030 0x001c 00000000 00000000 00000000 00000000 0x0000

33 usbfd -NA- 3 031 0x001c 00000000 00000000 00000000 00000000 0x0000

34 usb -NA- ffffffff 161 0x001c 00000000 00000000 00000000 00000000 0x0000

The /proc/pcan file contains:

 the driver version (release date and version numbers) with build date and time

 the list of the PC CAN interfaces the driver is able to handle (see Table 1 sur la page 9)

 the count of PC CAN interfaces detected by the driver and the major number the Linux kernel has

assigned to the driver

 the table of all the CAN devices the driver has detected (one per line)

PCAN Driver for Linux v8 – User Manual

18

The columns of the PC CAN interfaces table are properties that are common to each interface:

Column PC CAN interface property description

n decimal value The minor number the driver has assigned to that PC CAN interface

type pci PCI/PCIe/PCC/EC based interface equipped with a physical or FPGA SJA1000 or controller

isa ISA based interface equipped with a SJA1000 controller

sp Standard Parallel interface equipped with a SJA1000 controller

epp Enhanced Parallel interface equipped with a SJA1000 controller

usb USB interface equipped with a SJA1000 controller (PCAN-USB)

usbfd USB interface equipped with a CAN FD FPGA (PCAN-USB FD)

pcifd PCI/PCIe based interface equipped with a CAN FD FPGA

ndev canx If the netdev interface has been selected when building the driver, this column contains the

name of the PC CAN interface for the SocketCAN layer

not applicable When the driver has been built to run in chardev mode (default mode), then this column is

meaningless

base hexadecimal

value

The I/O port used to access the PC CAN interface hardware, if it is a Parallel or an ISA interface

The I/O base address to access the PC CAN interface hardware in the other cases

The serial number of the adapter if the PC CAN interface is an USB interface

irq decimal value The IRQ number attached to the PC CAN interface, if any

The device number devid set to the PC CAN interface, if the PC CAN interface is an USB

interface

btr hexadecimal

value

The nominal bitrate set to the PC CAN interface, following the BTR0BTR1 format of the

SJA1000 bitrate register

read hexadecimal

value

Number of CAN/CAN FD frames read from the driver by the applications that have opened this

interface

write hexadecimal

value

Number of CAN/CAN FD frames written to the driver by the applications that have opened this

interface

irqs hexadecimal

value

Number of interrupts counted by the driver for that PC CAN interface (when the driver has

connected a handler to an IRQ level)

Number of packets received by the driver from the USB subsystem, in case of an USB CAN

interface

errors hexadecimal

value

Number of errors encountered by the driver for this interface. This counter handles all kind of

errors (controller error as well as driver internal errors). Some more information about errors is

given in the status column

status bit mask The signification of each error bit is defined by the CAN_ERR_xxx constants defined in

/usr/include/pcan.h.

Table 4: /proc/pcan columns

4.4 /sysfs Interface

Note: This feature is new since v8.x of the driver.

For historical reasons, v8.x of the driver always handles the /proc/pcan file, but it should be considered

as deprecated and for CAN 2.0 usage only. Since v8.x, the driver also exports all of the /proc/pcan

properties (and some more) to the /sysfs interface.

a) The /sys/class/pcan/version attribute exports the driver version number:

$ cat /sys/class/pcan/version

8.0.0

b) The /sys/class/pcan directory exports the list of all the CAN interfaces it handles:

PCAN Driver for Linux v8 – User Manual

19

$ tree -a /sys/class/pcan

/sys/class/pcan

├── pcanisa8 -> ../../devices/virtual/pcan/pcanisa8

├── pcanisa9 -> ../../devices/virtual/pcan/pcanisa9

├── pcanpci4 -> ../../devices/virtual/pcan/pcanpci4

├── pcanpci5 -> ../../devices/virtual/pcan/pcanpci5

├── pcanpcifd0 -> ../../devices/virtual/pcan/pcanpcifd0

├── pcanpcifd1 -> ../../devices/virtual/pcan/pcanpcifd1

├── pcanpcifd2 -> ../../devices/virtual/pcan/pcanpcifd2

├── pcanpcifd3 -> ../../devices/virtual/pcan/pcanpcifd3

├── pcanusb35 -> ../../devices/virtual/pcan/pcanusb35

├── pcanusb36 -> ../../devices/virtual/pcan/pcanusb36

├── pcanusbfd32 -> ../../devices/virtual/pcan/pcanusbfd32

├── pcanusbfd33 -> ../../devices/virtual/pcan/pcanusbfd33

├── pcanusbfd34 -> ../../devices/virtual/pcan/pcanusbfd34

└── version

These entries have been extended to export some PCAN devices private properties, as shown (bold) in

the example below (bold-green lines properties are the same as the columns of /proc/pcan):

$ ls -l /sys/class/pcan/pcanpci4/

total 0

-r--r--r-- 1 root root 4096 nov. 6 12:34 adapter_name

-r--r--r-- 1 root root 4096 nov. 6 12:34 adapter_number

-r--r--r-- 1 root root 4096 nov. 6 12:34 adapter_version

-r--r--r-- 1 root root 4096 nov. 6 12:34 base

-r--r--r-- 1 root root 4096 nov. 6 12:34 btr0btr1

-r--r--r-- 1 root root 4096 nov. 6 12:34 bus_state

-r--r--r-- 1 root root 4096 nov. 6 12:34 clock

-r--r--r-- 1 root root 4096 nov. 6 12:34 ctrlr_number

-r--r--r-- 1 root root 4096 nov. 6 12:34 dev

-r--r--r-- 1 root root 4096 nov. 6 12:34 devid

-r--r--r-- 1 root root 4096 nov. 6 12:34 errors

-r--r--r-- 1 root root 4096 nov. 6 12:34 hwtype

-r--r--r-- 1 root root 4096 nov. 6 12:34 init_flags

-r--r--r-- 1 root root 4096 nov. 6 12:34 irq

-r--r--r-- 1 root root 4096 nov. 6 12:34 irqs

-r--r--r-- 1 root root 4096 nov. 6 12:34 minor

-r--r--r-- 1 root root 4096 nov. 6 12:34 nom_bitrate

-r--r--r-- 1 root root 4096 nov. 6 12:34 nom_brp

-r--r--r-- 1 root root 4096 nov. 6 12:34 nom_sjw

-r--r--r-- 1 root root 4096 nov. 6 12:34 nom_tq

-r--r--r-- 1 root root 4096 nov. 6 12:34 nom_tseg1

-r--r--r-- 1 root root 4096 nov. 6 12:34 nom_tseg2

drwxr-xr-x 2 root root 0 nov. 6 12:34 power

-r--r--r-- 1 root root 4096 nov. 6 12:34 read

-r--r--r-- 1 root root 4096 nov. 6 12:34 rx_fifo_ratio

-r--r--r-- 1 root root 4096 nov. 6 12:34 status

lrwxrwxrwx 1 root root 0 nov. 6 12:34 subsystem -> ../../../../class/pcan

-r--r--r-- 1 root root 4096 nov. 6 12:34 tx_fifo_ratio

-r--r--r-- 1 root root 4096 nov. 6 12:34 type

-rw-r--r-- 1 root root 4096 nov. 6 12:33 uevent

-r--r--r-- 1 root root 4096 nov. 6 12:34 write

PCAN Driver for Linux v8 – User Manual

20

Reading the content of all of the above files will display something like that:

$ for f in /sys/class/pcan/pcanpci4/*; do [-f $f] && echo -n "`basename $f` =

" && cat $f; done

adapter_name = PCAN-PCI

adapter_number = 0

adapter_version =

base = 0xfdee0000

btr0btr1 = 0x001c

bus_state = 0

clock = 8000000

ctrlr_number = 0

dev = 249:4

devid = 4294967295

errors = 0

hwtype = 10

init_flags = 0x00000000

irq = 16

irqs = 0

minor = 4

nom_bitrate = 500000

nom_brp = 1

nom_sjw = 1

nom_tq = 125

nom_tseg1 = 13

nom_tseg2 = 2

read = 0

rx_fifo_ratio = 0.00

status = 0x0000

tx_fifo_ratio = 0.00

type = pci

uevent = MAJOR=249

MINOR=4

DEVNAME=pcanpci4

write = 0

Note: Depending on the CAN hardware, the device node might export some more properties. For

example, a CAN FD PCIe device will export the following properties (new properties are bold):

$ for f in /sys/class/pcan/pcanpcifd1/*; do [-f $f] && echo -n "`basename $f`

= " && cat $f; done

adapter_name = PCAN-PCIe FD

adapter_number = 0

adapter_version = 2.1.3

base = 0xf8ba1000

btr0btr1 = 0x001c

bus_load = 0

bus_state = 0

clock = 80000000

ctrlr_number = 1

data_bitrate = 2000000

data_brp = 2

data_sample_point = 7500

data_sjw = 1

data_tq = 25

data_tseg1 = 14

data_tseg2 = 5

dev = 249:1

devid = 4294967295

PCAN Driver for Linux v8 – User Manual

21

errors = 0

hwtype = 19

irq = 48

irqs = 0

minor = 0

nom_bitrate = 500000

nom_brp = 4

nom_sample_point = 8750

nom_sjw = 1

nom_tq = 50

nom_tseg1 = 34

nom_tseg2 = 5

read = 0

rx_error_counter = 0

rx_fifo_ratio = 0.00

status = 0x0000

tx_error_counter = 0

tx_fifo_ratio = 0.00

type = pcifd

uevent = MAJOR=249

MINOR=1

DEVNAME=pcanpcifd1

write = 0

4.5 lspcan Tool

Note: This feature is new since v8.x of the driver.

The lspcan tool is a shell script based on the /sysfs interface that can be used to get an overview of the

PC CAN interfaces and CAN channels of the host.

$./lspcan --help

lspcan: list PEAK-System CAN/CANFD devices found by driver

Option:

-a | --all equivalent to: -i -s

-f | --forever forever loop on devices (^C to stop)

-h | --help display this help

-i | --info information about PCAN devices

-s | --stats statistics about PCAN devices

-t | --title display a title line over columns

-T | --tree tree version

 --version display driver version

PCAN Driver for Linux v8 – User Manual

22

The "-i" option displays static properties of devices nodes:

$./lspcan -T -t -i

dev name port irq clock btrs bus

[PCAN-ISA 0]

 |_ pcanisa8 CAN1 10 8MHz 500k CLOSED

 |_ pcanisa9 CAN2 5 8MHz 500k CLOSED

[PCAN-PCI 0]

 |_ pcanpci4 CAN1 19 8MHz 500k CLOSED

 |_ pcanpci5 CAN2 19 8MHz 500k CLOSED

[PCAN-PCIe FD 0]

 |_ pcanpcifd0 CAN1 32 80MHz 500k+2M CLOSED

 |_ pcanpcifd1 CAN2 32 80MHz 500k+2M CLOSED

[PCAN-PCIe FD 1]

 |_ pcanpcifd2 CAN1 33 80MHz 500k+2M CLOSED

 |_ pcanpcifd3 CAN2 33 80MHz 500k+2M CLOSED

[PCAN-USB 0]

 |_ pcanusb32 CAN1 - 8MHz 500k CLOSED

[PCAN-USB 1]

 |_ pcanusb33 CAN1 - 8MHz 500k CLOSED

[PCAN-USB Pro FD 0]

 |_ pcanusbfd34 CAN1 - 80MHz 500k+2M CLOSED

 |_ pcanusbfd35 CAN2 - 80MHz 500k+2M CLOSED

On the other hand, running lspcan with –T –t –s –f refreshes the screen every second with a detailed

view of statistics collected from all the PC CAN interfaces present on the Linux host:

PCAN driver version: 8.x.y

dev name port irq clock btrs bus %bus rx tx

err

[PCAN-ISA 0]

 |_ pcanisa8 CAN1 10 8MHz 500k CLOSED - 0 0 0

 |_ pcanisa9 CAN2 5 8MHz 500k CLOSED - 0 0 0

[PCAN-PCI 0]

 |_ pcanpci4 CAN1 19 8MHz 500k CLOSED - 0 0 0

 |_ pcanpci5 CAN2 19 8MHz 500k CLOSED - 0 0 0

[PCAN-PCIe FD 0]

 |_ pcanpcifd0 CAN1 30 80MHz 500k+2M CLOSED 0.00 0 0 0

 |_ pcanpcifd1 CAN2 30 80MHz 500k+2M CLOSED 0.00 0 0 0

[PCAN-PCIe FD 1]

 |_ pcanpcifd2 CAN1 31 80MHz 500k+2M CLOSED 0.00 0 0 0

 |_ pcanpcifd3 CAN2 31 80MHz 500k+2M CLOSED 0.00 0 0 0

[PCAN-USB 0]

 |_ pcanusb35 CAN1 - 8MHz 500k CLOSED - 0 0 0

[PCAN-USB 1]

 |_ pcanusb36 CAN1 - 8MHz 1M PASSIVE - 535608 0

585

[PCAN-USB Pro FD 0]

 |_ pcanusbfd32 CAN1 - 80MHz 500k+2M CLOSED 0.00 0 0 0

 |_ pcanusbfd33 CAN2 - 80MHz 1M ACTIVE 10.01 1 535634 0

[PCAN-USB FD 0]

 |_ pcanusbfd34 CAN1 - 80MHz 500k+2M CLOSED 0.00 0 0 0

Note: The content of the above screen copy may change, depending on the version of the driver.

PCAN Driver for Linux v8 – User Manual

23

4.6 read/write Interface

As described, when reading /proc/pcan, once loaded, the driver is ready to operate on the CAN

channels it has detected. For each of them, a default bitrates configuration is defined that enables to

read/write from/to the channel. In chardev mode, the read/write entries of the driver’s chardev interface

are able to:

 initialize a CAN channel

 write CAN/CAN FD frames

 read CAN/CAN FD frames

This (very) simple interface makes it possible to quickly check if the driver correctly works. This interface

uses a syntax made of:

1. a letter that indicates the command

2. a list of parameters for the command

Command and parameters must be separated by blank characters.

Command Parameter Description

i XXXX If XXXX is a number <= 65535, then it is interpreted as a BTR0BTR1

SJA1000 register value. The CAN channel is then initialized with the

corresponding bitrate value in CAN 2.0 mode only.

param1=value1[,param2=value2…] If the parameter is not a number, then it is parsed as a characters string

made of a list of param=value couples. Each couple is separated from the

next one by a “,” (comma). The parameters list is:

Parameter Description

f_clock The clock to select

nom_bitrate The nominal bitrate in bit/s.

nom_brp

The bit timing specifications for the nominal

bitrate, as defined by ISO 11898.

nom_tseg1

nom_tseg2

nom_sjw

data_bitrate The data bitrate in bit/s. if the CAN channel is to

be initialized in CAN FD mode.

data_brp

The bit timing specifications for the data bitrate,

as defined by ISO 11898, when the channel is to

be initialized in CAN FD mode.

data_tseg1

data_tseg2

data_sjw

Each value is a numeric value. Unit symbol like k or M can be used as

shortcut.

Example:
$ echo "i nom_bitrate=1M" > /dev/pcanusb0

The above command initializes the pcanusb0 CAN channel to connect to a

1 Mbit/s CAN 2.0 channel.

PCAN Driver for Linux v8 – User Manual

24

Command Parameter Description

m s id len [xx [xx …]] Write CAN standard message id (numeric value <= 0x7ff) with len data

bytes valued by xx [xx].

Example:
$ echo "m s 0x123 3 01 02 03" > /dev/pcanusb0

The above command writes CAN message ID 0x123 with 3 the data bytes

“01 02 03” on the CAN bus connected to the 1st CAN port of the USB CAN

interface.

e id len [xx [xx …]] Write CAN extended message id (numeric value <= 0x3fffffff) with len

data bytes valued by xx [xx].

Example:
$ echo "m e 0x123 3 01 02 03" > /dev/pcanusb0

The above command writes CAN message ID 0x00000123 with 3 the data

bytes “01 02 03” on the CAN bus connected to the 1st CAN port of the USB

CAN interface.

r s id Write the CAN RTR (Remote Transmission Request) of standard id

(numeric value <= 0x7ff).

e id Write the CAN RTR (Remote Transmission Request) of extended id

(numeric value <= 0x7ff).

M Same as m but asking the driver to activate the self-receive feature (if the CAN controller of the given channel has

the ability to copy an outgoing CAN frame to its own rx queue).

R Same as r but asking the driver to activate the self-receive feature (if the CAN controller of the given channel has

the ability to copy an outgoing CAN frame to its own rx queue).

b Same as m but asking the driver to activate the BRS feature (if the given channel is equipped with a CAN FD

controller).

B Same as b but asking the driver to activate the self-receive feature (if the CAN FD controller of the given channel

has the ability to copy an outgoing CAN FD frame to its own rx queue).

Table 5: read/write interface syntax

If reading from this interface, the user is able to receive any of the above messages, plus status (x)

messages:

Message Parameter Description

x b id len [xx [xx …]] Bus status message indicating CAN bus state:

id Bus State

1 ACTIVE

2 WARNING

3 PASSIVE

4 BUSOFF

c id len [xx [xx …]] Controller error/status:

id Error

5 Controller Rx queue empty

6 Controller Rx queue overflow

7 Controller Tx queue empty

8 Controller Tx queue overflow

i id len [xx [xx …]] Internal (driver) error/status.

id Error

5 Driver Rx queue empty

6 Driver Rx queue overflow

7 Driver Tx queue empty

8 Driver Tx queue overflow

Table 6: Status (x) message

PCAN Driver for Linux v8 – User Manual

25

4.7 test Directory

The PCAN Driver for Linux package includes a test directory that contains the C/C++ sources and

Makefile enabling to quickly build and run some simple test binary applications, in order to check if the

entire chardev installation (driver and libraries) is fully operational. These test programs also are example

programs that demonstrate the usage of the driver library in a non-RT as well as in an RT environment.

The test directory applications should be built after the libraries under lib directory have been built and

installed. Like the driver, these libraries and applications accept non-RT and RT compilation.

The global package installation described in 3.1 Build Binaries sur la page 7 has built and installed those

binaries in the system. To (re-)build them (without using any RT system calls):

$ cd peak-linux-driver-x.y.z

$ make –C test

32-bit version:

Since driver version 8.3, a 64-bit version of the pcan driver can operate with any 32-bit application. To

build the 32-bit version of the applications stored in this test directory, you need to do:

$ cd peak-linux-driver-x.y.z

$ make –C test all32

Note: A 32-bit version of libpcan must have been built and installed first (see Making the 32-bit

version of the library on page 7). Moreover, in order to build any 32-bit application while running a

64-bit Kernel, you first need to install the gcc-multilib package. Finally, the specific libpopt 32-

bit package must be installed to:

$ sudo apt-get install gcc-multilib

$ sudo apt-get install libpopt-dev:i386

Real-time versions:

A user who wants to rebuild the RT version of these binaries will have to:

$ cd peak-linux-driver-x.y.z

$ make –C test RT=XENOMAI # Or "make xeno" since pcan 8.2

if running a Xenomai RT extended kernel, or

$ cd peak-linux-driver-x.y.z

$ make –C test RT=RTAI # Or "make rtai" since pcan 8.2

if running a RTAI extended kernel.

Note: Users (as well as developers) of CAN-FD-specific applications can directly have a look at the

new pcanfdtst application described in 4.7.5 sur la page 29.

PCAN Driver for Linux v8 – User Manual

26

4.7.1 receivetest

This application writes all frames it receives from a given CAN 2.0 channel (only!) to stdout. This

application also demonstrates the usage of the old lipcan CAN 2.0 API in both RT and non-RT

environments.

Usage:

$ receivetest --help

receivetest Version "Release_20150611_n" (www.peak-system.com)

------- Copyright (C) 2004-2009 PEAK System-Technik GmbH ------

receivetest comes with ABSOLUTELY NO WARRANTY. This is free

software and you are welcome to redistribute it under certain

conditions. For details see attached COPYING file.

receivetest - a small test program which receives and prints CAN messages.

usage: receivetest [-b=BTR0BTR1] [-e] [-?]

 {[-f=devicenode] | {[-t=type] [-p=port [-i=irq]]}}

options:

-f=devicenode path to PCAN device node (default=/dev/pcan0)

-t=type type of interface (pci, sp, epp, isa, pccard, usb (default=pci)

-p=port port number if applicable (default=1st port of type)

-i=irq irq number if applicable (default=irq of 1st port)

-b=BTR0BTR1 bitrate code in hex (default=see /proc/pcan)

-e accept extended frames (default=standard frames only)

-d=no donot display received messages (default=yes)

-n=mloop number of loops to run before exit (default=infinite)

-? or --help displays this help

receivetest: finished (0): 0 message(s) received

Example:

Display up to 100 (extended and standard) messages received from the 1st CAN port of a USB interface

connected to a CAN bus at 1 Mbit/s:

$ receivetest –f=/dev/pcanusb32 –b=0x14 –e –n=100

Note: The bitrate set by this program to this CAN interface is exported by the driver:

$ cat /proc/pcan | grep -e "^32"

32 usb -NA- 3 030 0x0014 00000001 00000000 00000000 00000001 0x0000

$ cat /sys/class/pcan/pcanusb32/nom_bitrate

1000000

$ cat /sys/class/pcan/pcanusb32/btr0btr1

0x0014

Note: The RT device doesn't appear under "/dev" while running an RT Linux, so RT version of

CAN_Open(libpcan) removes the "/dev" prefix from the device name characters string, while

pcanfd_open(lipcanfd) DOES NOT. This workaround ONLY works with "/dev/pcanX" device names.

PCAN Driver for Linux v8 – User Manual

27

4.7.2 transmitest

This application writes all the frames it finds in a given text file to a given CAN 2.0 channel (only!). This

application also demonstrates the use of the old lipcan CAN 2.0 API in both RT and non-RT

environments.

Usage:

$ transmitest --help

transmitest Version "Release_20150610_n" (www.peak-system.com)

------- Copyright (C) 2004-2009 PEAK System-Technik GmbH ------

transmitest comes with ABSOLUTELY NO WARRANTY. This is free

software and you are welcome to redistribute it under certain

conditions. For details see attached COPYING file.

transmitest - a small test program which transmits CAN messages.

usage: transmitest filename

 [-b=BTR0BTR1] [-e] [-r=msec] [-n=max] [-?]

 {[-f=devicenode] | {[-t=type] [-p=port [-i=irq]]}}

filename mandatory name of message description file.

options:

-f=devicenode path to PCAN device node (default=/dev/pcan0)

-t=type type of interface (pci, sp, epp, isa, pccard, usb (default=pci)

-p=port port number if applicable (default=1st port of type)

-i=irq irq number if applicable (default=irq of 1st port)

-b=BTR0BTR1 bitrate code in hex (default=see /proc/pcan)

-e accept extended frames (default=standard frames only)

-r=msec max time to sleep before transm. next msg (default=no sleep)

-n=loop number of loops to run before exit (default=infinite)

-? or --help displays this help

transmitest: finished (0).

The file transmit.txt is given as an example in the test directory. The syntax of this file is quite

simple and follows the syntax of the write interface of the driver. The test loops the transmission of the

frames found in the input text file. The number of loops is infinite unless the -n option is specified on

command line.

Example:

Transmit 100 times all the CAN 2.0 frames described in transmit.txt to the 1st CAN port of a USB

interface connected to a CAN bus at 1 Mbit/s:

$ transmitest transmit.txt -f=/dev/pcanusb32 –b=0x14 –e –n=100

Note: The bitrate set by this program to this CAN interface is exported by the driver:

$ cat /proc/pcan | grep -e "^32"

32 usb -NA- 3 030 0x0014 00000001 00000000 00000000 00000001 0x0000

$ cat /sys/class/pcan/pcanusb32/nom_bitrate

1000000

$ cat /sys/class/pcan/pcanusb32/btr0btr1

0x0014

PCAN Driver for Linux v8 – User Manual

28

Note: The RT device doesn't appear under "/dev" while running an RT Linux, so RT version of

CAN_Open(libpcan) removes the "/dev" prefix from the device name characters string, while

pcanfd_open(lipcanfd) DOES NOT. This workaround ONLY works with "/dev/pcanX" device names.

4.7.3 pcan-settings

This application enables to read/write some specific values from/to the non-volatile memory of some PC

CAN interfaces. This feature is useful to the user who wants his hot-pluggable CAN interfaces to always

have the same device node name, whatever socket it is plugged on (operating systems devices

enumeration rules don't give the same number to the same device, if this device is not plugged to the

same socket/bus/port…).

Usage:

$ pcan-settings --help

Usage: pcan-settings [OPTION...]

 -f, --deviceNode='device file path' set path to PCAN device

 (default: "/dev/pcan32")

 -s, --SerialNo get serial No

 -d, --DeviceNo[='non-volatile device number'] get or set device No

 -v, --verbose make it verbose

Help options:

 -?, --help Show this help message

 --usage Display brief usage message

Example:

 Get the serial number of a USB CAN interface:

$ pcan-settings -f=/dev/pcanusb32 –s

0x00000003

 Set device numbers 30 and 31 for CAN1 and CAN2 of a USB 2xCAN channels interface:

$ pcan-settings -f=/dev/pcanusb32 –d 30

$ pcan-settings -f=/dev/pcanusb33 –d 31

 Read the device numbers of CAN1 and CAN2 of a USB 2xCAN channels interface:

$ pcan-settings -f=/dev/pcanusb32 –d

30

$ pcan-settings -f=/dev/pcanusb33 –d

31

When the driver is reloaded, it reads these numbers and exports them to /sys:

$ cat /sys/class/pcan/pcanusb32/devid

30

$ cat /sys/class/pcan/pcanusb33/devid

31

PCAN Driver for Linux v8 – User Manual

29

Thus, Udev is notified and reads the driver’s rules. These default rules say that, if devid is not -1, then it

should be used to create a symbolic link to the true device node under a directory which name is the

adapter name. In this example, if the USB CAN interface is a PCAN-USB Pro, then two symbolic links are

created under /dev/pcan-usb_pro:

$ ls -l /dev/pcan-usb_pro

total 0

drwxr-xr-x 2 root root 11 nov. 8 11:00 0

lrwxrwxrwx 1 root root 11 nov. 8 11:00 devid=30 -> ../pcanusb32

lrwxrwxrwx 1 root root 11 nov. 8 11:00 devid=31 -> ../pcanusb33

4.7.4 bitratetest

Note: This application is kept for historical reasons only but, since bitrate values and clock selection

are now proposed by the new API to the user space, it is considered as deprecated.

This application displays the BTR0BTR1 values for some well-known bitrate values. The BTR0BTR1

16-bits codification is 8 MHz SJA1000-controller-specific.

Usage:

$ bitratetest --help

bitratetest Version "Release_20150617_a" (www.peak-system.com)

------- Copyright (C) 2004-2009 PEAK System-Technik GmbH ------

bitratetest comes with ABSOLUTELY NO WARRANTY. This is free

software and you are welcome to redistribute it under certain

conditions. For details see attached COPYING file.

bitratetest - a small test the calculation of BTR0BTR1 data from PCAN.

usage: bitratetest [-f=devicenode] [-?]

 -f=devicenode - path to devicefile, default=/dev/pcan0

 -? or --help - this help

bitratetest: finished (0).

4.7.5 pcanfdtst

This application enables to test the driver, since it is able to receive/transmit CAN 2.0/CAN FD messages

from/to all of the device nodes handled by the driver. It works in two modes:

 when running in RX mode, the application only writes everything received from all the opened

CAN FD device nodes on the screen

 when running in TX mode, the application transmits CAN FD frames on all the opened devices

and also displays any event received from them

Moreover, this application demonstrates the usage of the new CAN FD API of the driver in both RT and

non-RT Linux. Among all the novelties, the application allows to:

 specify nominal and data bitrates for CAN FD usage

 select the device clock

 select ISO and non-ISO CAN FD modes

PCAN Driver for Linux v8 – User Manual

30

 demonstrate the usage of the new entry points of the new API that enable multi-messages

transmit/receive

 demonstrate the new event-based API

Usage:

$ pcanfdtst --help

Setup CAN[FD] tests between CAN channels over the PCAN Driver (>= v8.x)

WARNING

 This application comes with ABSOLUTELY NO WARRANTY. This is free

 software and you are welcome to redistribute it under certain

 conditions. For details, see attached COPYING file.

USAGE

 $ pcanfdtst MODE [OPTIONS] CAN [CAN...]

MODE

 tx generate CAN traffic on the specified CAN interfaces

 rx check CAN traffic received on the specified CAN interfaces

CAN

 /dev/pcanx indicate which CAN interface is used in the test.

 Several CAN interfaces can be specified. In that case,

 each one is opened in non-blocking mode.

OPTIONS

 -a | --accept f-t add message filter [f...t]

 -b | --bitrate v set [nominal] bitrate to "v" bps

 --btr0btr1 bitrates with BTR0BTR1 format

 -B | --brs data bitrate used for transmitting CANFD msgs

 -c | --clock v select clock frequency "v" Hz

 -D | --debug (maybe too) lot of display

 -d | --dbitrate v set data bitrate to "v" bps

 -f | --fd select CAN FD ISO mode

 -F | --fd-non-iso select CAN FD non-ISO mode

 -h | --help display this help

 -i | --id v|r set fixed CAN ID "v" or randomly

 -is v|r set fixed standard CAN ID "v" or randomly

 -ie v|r set fixed extented CAN ID "v" or randomly

 -I | --incr v "v"=nb of data bytes to use for increment counter

 -l | --len v set fixed CAN dlc "v" for tests

 -m | --mul v tx/rx "v" msgs at once

 -n v do "v" test loops and stop

 -o | --listen-only set PCAN device in listen-only mode

 -p | --pause-us v set "v" us. pause between tests

 -P | --tx-pause-us v force a pause of "v" us. between each Tx frame

 (if hw supports it)

 -q | --quiet nothing is displayed

 -r | --rtr set the RTR flag to msgs sent

 --no-rtr clear the RTR flag from msgs sent

 -s | --stdmsg-only don't handle extended msgs

 -t | --timeout-ms v wait "v" ms. for events

 --ts-mode v set hw timestamp mode to v (hw dependant)

 -u | --bus-load get bus load notifications from the driver

 -v | --verbose things are (very much) explained

 -w | --with-ts logs are prefixed with time of day (s.us)

PCAN Driver for Linux v8 – User Manual

31

 Bitrates and clock values can be expressed with ending k or M as shortcuts for factor 1,000 or

factor 1,000,000. Note that if the option --btr0btr1 is used, then bitrate and dbitrate

options value is read as a BTR0BTR1 format coded value.

 The unit of the pause delay between each write or read system call is the microsecond. Here,

using an m appended to a value (e.g. 5m) changes to milliseconds and an appended s to full

seconds (e.g. 7s).

 The unit of the timeout-ms parameter is millisecond. Appending an s to the value switches to

seconds (e.g. 7s).

 If only one PC CAN interface is given on the command line, the application runs in “blocking”

mode, that is, the application task blocks into the driver while the receive queue of the driver is

empty, or while the transmission queue of the driver is full.

 If more than one PC CAN interface is given on the command line, the application does the

following:

 It runs in non-blocking mode and uses the select() system call in non-RT environment,

to be able to wait for several events at once.

 It creates as many real-time tasks as given device nodes, to be able to wait for several

events at the same time.

 The application’s default behavior is to read/write messages from/to the driver one by one. When

the --mul x option is used (with x > 1), then the application reads/writes x messages at once.

Examples:

1. Write 10 CAN 2.0 frames (with random ID and data length) each second on a bus with a bitrate of

250 kbit/s using the 2nd USB CAN interface:

$ pcanfdtst tx -n 10 -b 250k -p 1s /dev/pcanusb33

 0.001518 /dev/pcanusb1 > BUS STATE=ACTIVE [Rx:0 Tx:0]

 0.4293989212 /dev/pcanusb1 < 567 [00 00 00 00 00 00 00]

 1.4293989342 /dev/pcanusb1 < 069 [00 00 00 00 00 00 00]

 2.4293989614 /dev/pcanusb1 < 451 [00 00 00 00 00 00 00]

 3.4293989798 /dev/pcanusb1 < 44a [00 00 00]

 4.4293989995 /dev/pcanusb1 < 729 [00]

 5.4293990176 /dev/pcanusb1 < 0ba [00 00 00 00]

 6.4293990468 /dev/pcanusb1 < 1f2 [00 00 00 00 00 00 00]

 7.4293990660 /dev/pcanusb1 < 1e3 [00 00 00 00]

 8.4293990845 /dev/pcanusb1 < 07c

 9.4293991023 /dev/pcanusb1 < 054 [00]

/dev/pcanusb1 < [packets=10 calls=10 bytes=41 eagain=0]

sent frames: 10

2. Write CAN FD (non-ISO) frames with extended ID 0x123 and 24 data bytes at a nominal bitrate of

1 Mbit/s and data bitrate of 2 Mbit/s, using the 60 MHz clock of the 2nd USB interface and the

1st PCI interface of the host:

PCAN Driver for Linux v8 – User Manual

32

$ pcanfdtst tx --fd-non-iso -n 10 -ie 0x123 -l 24 -b 1M -d 2M -c 60M /dev/pcanusbfd33

/dev/pcanpcifd0

 0.001871 /dev/pcanusbfd33 > BUS STATE=ACTIVE [Rx:0 Tx:0]

 0.022460 /dev/pcanusbfd33 < 00000123 .e... [00 00 00 00 00 00 00 00 00 00 00 00]

 [00 00 00 00 00 00 00 00 00 00 00 00]

 0.000000 /dev/pcanpcifd0 > BUS STATE=ACTIVE [Rx:0 Tx:0]

 0.023558 /dev/pcanpcifd0 < 00000123 .e... [00 00 00 00 00 00 00 00 00 00 00 00]

 [00 00 00 00 00 00 00 00 00 00 00 00]

 0.024662 /dev/pcanusbfd33 < 00000123 .e... [00 00 00 00 00 00 00 00 00 00 00 00]

 [00 00 00 00 00 00 00 00 00 00 00 00]

 0.025754 /dev/pcanpcifd0 < 00000123 .e... [00 00 00 00 00 00 00 00 00 00 00 00]

 [00 00 00 00 00 00 00 00 00 00 00 00]

…

3. Read the same bus, but from the 1st USB interface:

$ pcanfdtst rx --fd-non-iso -b 1M -d 2M -c 60M /dev/pcanusbfd32

 0.001848 /dev/pcanusb32 > BUS STATE=ACTIVE [Rx:0 Tx:0]

 14.761845 /dev/pcanusb32 > 00000123 .e... [00 00 00 00 00 00 00 00 00 00 00 00]

 [00 00 00 00 00 00 00 00 00 00 00 00]

 14.764041 /dev/pcanusb32 > 00000123 .e... [00 00 00 00 00 00 00 00 00 00 00 00]

 [00 00 00 00 00 00 00 00 00 00 00 00]

 14.766249 /dev/pcanusb32 > 00000123 .e... [00 00 00 00 00 00 00 00 00 00 00 00]

 [00 00 00 00 00 00 00 00 00 00 00 00]

…

4. Transmit frames, but use the new entry point of the multi-messages write API. Here, the

application transmits 3 copies of the same frame:

$ /pcanfdtst tx --fd-non-iso -n 10 --mul 3 -ie 0x123 -I 4 -b 1M -d 2M -c 60M

/dev/pcanpcifd0

 0.000283 /dev/pcanpcifd0 < 00000123 .e... [00 00 00 00]

 0.000000 /dev/pcanpcifd0 > BUS STATE=ACTIVE [Rx:0 Tx:0]

 0.001426 /dev/pcanpcifd0 < 00000123 .e... [01 00 00 00]

 0.002528 /dev/pcanpcifd0 < 00000123 .e... [02 00 00 00]

 0.003675 /dev/pcanpcifd0 < 00000123 .e... [03 00 00 00]

 0.005042 /dev/pcanpcifd0 < 00000123 .e... [04 00 00 00]

 0.006147 /dev/pcanpcifd0 < 00000123 .e... [05 00 00 00]

 0.007252 /dev/pcanpcifd0 < 00000123 .e... [06 00 00 00]

 0.008349 /dev/pcanpcifd0 < 00000123 .e... [07 00 00 00]

 0.009457 /dev/pcanpcifd0 < 00000123 .e... [08 00 00 00]

 0.010564 /dev/pcanpcifd0 < 00000123 .e... [09 00 00 00]

/dev/pcanpcifd0 < [packets=30 calls=10 bytes=120 eagain=0]

sent frames: 30

When reading on the same bus, you can see that the driver has written each frame 3 times:

PCAN Driver for Linux v8 – User Manual

33

$ pcanfdtst rx --fd-non-iso -b 1M -d 2M -c 60M /dev/pcanusbfd32

 0.001802 /dev/pcanusbfd32 > BUS STATE=ACTIVE [Rx:0 Tx:0]

 8.714190 /dev/pcanusbfd32 > 00000123 .e... [00 00 00 00]

 8.714307 /dev/pcanusbfd32 > 00000123 .e... [00 00 00 00]

 8.714424 /dev/pcanusbfd32 > 00000123 .e... [00 00 00 00]

 8.714540 /dev/pcanusbfd32 > 00000123 .e... [01 00 00 00]

 8.714656 /dev/pcanusbfd32 > 00000123 .e... [01 00 00 00]

 8.714772 /dev/pcanusbfd32 > 00000123 .e... [01 00 00 00]

 8.715402 /dev/pcanusbfd32 > 00000123 .e... [02 00 00 00]

 8.715518 /dev/pcanusbfd32 > 00000123 .e... [02 00 00 00]

 8.715634 /dev/pcanusbfd32 > 00000123 .e... [02 00 00 00]

 8.716552 /dev/pcanusbfd32 > 00000123 .e... [03 00 00 00]

 8.716668 /dev/pcanusbfd32 > 00000123 .e... [03 00 00 00]

…

Note: The RT device doesn't appear under "/dev" while running an RT Linux, so the RT version of

pcanfdtst MUST use the real name of the CAN device, that is "pcanX". There are neither aliases nor

links that Udev can make when a RT device is created.

4.8 netdev Mode

If the PCAN driver for Linux has been built for SocketCAN4 usage (that is, in netdev mode), it is

compatible for running with some network tools as well as the CAN utilities proposed by the SocketCAN

community.

Note: Since kernel version 3.6, the netdev interface with all of the PEAK-System PC CAN interfaces is

natively included in the mainline kernel. So, there is no need to install the PCAN driver for Linux

when planning to use the SocketCAN interface in applications.

In this mode, the driver registers a “CAN network interface” for each PC CAN interface it enumerates.

Each network interface is given a name made of the prefix can, followed by a number starting from 0.

4.8.1 assign Parameter

The assign parameter of the driver (described in Table 2: Driver module parameters sur la page 10)

allows to break the default ascending number assignment model.

assign=peak

When loading the driver with the parameter assign=peak, the CAN network CAN interface number is

fixed to the PCAN device minor number. In this mode, canX interface defines the same PC CAN interface

as /dev/pcanX.

assign=pcanX:canY[,pcanX:canY]

Loading the driver with the parameter assign=pcanX:canY[,pcanX=canY] defines the name canY to

the device which name is pcanX.

4 Background information: https://en.wikipedia.org/wiki/SocketCAN

https://en.wikipedia.org/wiki/SocketCAN

PCAN Driver for Linux v8 – User Manual

34

assign=pcanX:canY

Loading the driver with the parameter assign=pcanX:canY sets the name canY to the device which

name is pcanX. When selecting this mode, the assign parameter value can be a list of several

assignments, each separated by a “,” (comma).

assign=devid[,peak]

When loading the driver with the parameter assign=devid, then the name of the network CAN interface

is made by using the devid value of the corresponding PC CAN interface. If the PC CAN interface does

not define any devid, then the usual (ascending) order enumeration scheme is used (as if assign= was

not used) unless assign=devid,peak is used. In that case, the CAN network number will be the same as

the PCAN device number (as if assign=peak was used).

Note: The value of the devid property can be changed using test/pcan-settings utility (see 4.7.3

pcan-settings sur la page 28).

4.8.2 ifconfig/iproute2

Both of these utilities configure a canX interface. While ifconfig is somewhere too old to support all of

the CAN/CAN-FD-specific features, the last versions of the iproute2 package (especially the ip tool)

include options to setup a canX interface. Since v8, the canX interfaces exported by the driver can be

configured using the ip link command.

Note: Configuring the canX interfaces needs root privileges.

The ip tool has been modified to handle protocol-specific features of CAN and CAN FD. This simplifies

the bitrate setup of a CAN interface. The help of the tool describes its usage:

$ ip link set can0 type can help

Usage: ip link set DEVICE type can

 [bitrate BITRATE [sample-point SAMPLE-POINT]] |

 [tq TQ prop-seg PROP_SEG phase-seg1 PHASE-SEG1

 phase-seg2 PHASE-SEG2 [sjw SJW]]

 [loopback { on | off }]

 [listen-only { on | off }]

 [triple-sampling { on | off }]

 [one-shot { on | off }]

 [berr-reporting { on | off }]

 [restart-ms TIME-MS]

 [restart]

 Where: BITRATE := { 1..1000000 }

 SAMPLE-POINT := { 0.000..0.999 }

 TQ := { NUMBER }

 PROP-SEG := { 1..8 }

 PHASE-SEG1 := { 1..8 }

 PHASE-SEG2 := { 1..8 }

 SJW := { 1..4 }

 RESTART-MS := { 0 | NUMBER }

PCAN Driver for Linux v8 – User Manual

35

Thus, setting the bitrate to a CAN interface is now possible using one of the following options:

 bitrate bit-timing parameters set (aka sample-point, tq, prop-seg, phase-seg1, phase-seg2,

sjw)

 bitrate option followed by numeric value (if the kernel configuration option

CONFIG_CAN_CALC_BITTIMING was set)

The restart-ms option defines a timer in milliseconds. After this period the CAN interface is

automatically restarted on BUS-OFF condition. If the given numeric value is 0, then the automatic restart

mechanism is disabled, thus user will have to manually do:

$ sudo ip link set can0 type can restart

The last and complete version of how to use the ip link tool with CAN networks is available online at:

https://www.kernel.org/doc/Documentation/networking/can.txt

Examples:

 Set up a PCAN netdev interface with 500 kbit/s:

$ ip link set canX up type can bitrate 500000

 Set up a PCAN netdev CAN FD interface with 1 Mbit/s te and 2 Mbit/s of data bitrate (if supported):

$ ip link set canX up type can bitrate 1000000 dbitrate 2000000 fd on

 Set up a PCAN netdev CAN FD interface with 1 Mbit/s nominal bitrate and 2 Mbit/s data bitrate,

running in non-ISO mode (if supported by the device and the kernel):

$ ip link set canX up type can bitrate 1000000 dbitrate 2000000 fd-non-iso on

Note: The latest version of iproute2 package can be downloaded from:

https://www.kernel.org/pub/linux/utils/net/iproute2/

(knowing that iproute2-ss141224 v3.18 is ok)

You might use ifconfig for setting the interface UP or DOWN only:

$ ifconfig canX down

canX can't be used no more

$ ifconfig canX up

canX can be used by any application

4.8.3 can-utils

The can-utils package5 contains some tools and utilities that allow transmitting and receiving CAN as

well as CAN FD messages over the PCAN netdev interfaces.

5 Website can-utils: https://github.com/linux-can/can-utils/

https://www.kernel.org/doc/Documentation/networking/can.txt
https://www.kernel.org/pub/linux/utils/net/iproute2/
https://github.com/linux-can/can-utils/

PCAN Driver for Linux v8 – User Manual

36

Note: Transmitting and receiving to/from the CAN bus through the SocketCAN network interfaces

needs these interfaces to be configured (see 4.8.2 ifconfig/iproute2 sur la page 34).

Examples:

 Dump CAN/CAN FD messages received from the canX interface, display timestamps:

$ candump –t a canX

 Transmit a CAN message with ID 0x123 on canX with 4 data bytes 00 11 22 33:

$ cansend canX 123#00112233

 Transmit the same message with CAN FD (##) on canX, select the data bitrate for the data bytes

(BRS flags = 1):

$ cansend can1 123##100112233

PCAN Driver for Linux v8 – User Manual

37

5 Developer Guide

As explained in 3.1 Build Binaries sur la page 7, the PCAN Driver for Linux can be configured to run in

two exclusive modes:

1. If built for chardev mode, the driver exports a classic open/read/write/ioctl/close character device

interface to the user space applications, while

2. if built in netdev mode, the driver exports a socket interface.

Note: The netdev mode is not available when building the driver for real-time environment.

Building and installing the driver as described in 3.1 Build Binaries sur la page 7 and in 3.2 Install Package

sur la page 9 also builds and installs some user API libraries that encapsulate the system calls to the

driver:

 lipcan is the good and old API which is always offering access to CAN 2.0 channels (see 5.1.1

CAN 2.0 API sur la page 38)

 libpcanfd is the new API included in the package since version 8 of the driver. This new API

offers access to CAN 2.0 and CAN FD channels, as well as multi-messages services and status

events messaging. Since this library also includes all the entry points of libpcan described in

5.1.1 CAN 2.0 API sur la page 38, this library can also be linked with CAN 2.0 API applications

instead of using libpcan.

Both of these libraries can be built for being used by real-time applications. Two RT environments can be

selected when building these libraries:

To build real-time libraries for running Xenomai real-time tasks:

$ make –C lib RT=XENOMAI # Or "make xeno" since pcan 8.2

To build real-time libraries, for running RTAI real-time tasks:

$ make –C lib RT=RTAI # Or "make rtai" since pcan 8.2

5.1 chardev Mode

In this mode, the PCAN Driver for Linux creates one device node per CAN/CAN FD channel it discovers

and attaches a minor number to it (unique for the driver). Like every character mode driver, the PCAN

Driver for Linux is being attached a major number by the system.

Each device node can be opened, closed, read, and written (see 4.6 read/write Interface sur la page 23).

The main functions are implemented through the ioctl() entry point. The architecture of the several

software components of the driver package since v8 is summarized in Figure 1 au-dessous.

PCAN Driver for Linux v8 – User Manual

38

Figure 1: software components architecture

5.1.1 CAN 2.0 API

Note: This API is kept for backward compatibility reasons, thus these entry points are also proposed

by the new libpcanfd library. But, this API is considered as deprecated. Use the new CAN FD API

instead.

The (old) CAN 2.0 API ioctl codes are defined by pcan.h:

#define PCAN_INIT _IOWR(PCAN_MAGIC_NUMBER, MYSEQ_START, TPCANInit)

#define PCAN_WRITE_MSG _IOW (PCAN_MAGIC_NUMBER, MYSEQ_START + 1, TPCANMsg)

#define PCAN_READ_MSG _IOR (PCAN_MAGIC_NUMBER, MYSEQ_START + 2, TPCANRdMsg)

#define PCAN_GET_STATUS _IOR (PCAN_MAGIC_NUMBER, MYSEQ_START + 3, TPSTATUS)

#define PCAN_DIAG _IOR (PCAN_MAGIC_NUMBER, MYSEQ_START + 4, TPDIAG)

#define PCAN_BTR0BTR1 _IOWR(PCAN_MAGIC_NUMBER, MYSEQ_START + 5, TPBTR0BTR1)

#define PCAN_GET_EXT_STATUS _IOR (PCAN_MAGIC_NUMBER, MYSEQ_START + 6, TPEXTENDEDSTATUS)

#define PCAN_MSG_FILTER _IOW (PCAN_MAGIC_NUMBER, MYSEQ_START + 7, TPMSGFILTER)

#define PCAN_EXTRA_PARAMS _IOWR(PCAN_MAGIC_NUMBER, MYSEQ_START + 8, TPEXTRAPARAMS)

CAN 2.0/CAN FD application CAN 2.0 (only) application

libpcan.h #include <PCAN.h>

DWORD CAN_Init();

PCAN.h
#define PCAN_INIT

PCAN.ko
#include <pcanfd.h>

ioctl() {

case PCAN_INIT:

case PCANFD_SET_INIT:

}

#include <libpcan.h>

DWORD CAN_Init()

{

ioctl(PCAN_INIT);

}

libpcan.so

libpcanfd.h #include <libpcan.h>

int pcanfd_set_init()

DWORD CAN_Init();

pcanfd.h
#include <PCAN.h>

#define PCANFD_SET_INIT

#include <libpcanfd.h>

int pcanfd_set_init()

{

}

libpcanfd.so

#include <libpcan.h>

main()

{

h = CAN_Open();

CAN_Init(h);

CAN_Write(h);

CAN_Read(h);

}

can_appli.c #include <libpcanfd.h>

main()

{

fd = pcanfd_open();

err = pcanfd_set_init(fd);

err = pcanfd_send_msg(fd);

err = pcanfd_recv_msg(fd);

pcanfd_close(fd);

}

canfd_appli.c

PCAN Driver for Linux v8 – User Manual

39

This API enables to read and write CAN 2.0 messages (only) from/through any PC CAN interface of PEAK-

System. This API is encapsulated by the libpcan library (C/C++ programs like transmitest,

receivetest, bitratetest, and pcan-settings stored in the test directory use this API). Since this

API is always supported for CAN 2.0 access, to use this API, the application must link with -lpcan or

-lpcanfd.

The principle of this API is to implement a CAN 2.0 channel with something like an object HANDLE used

during the whole life of the connection to the CAN bus. This API is greatly inspired of the PCAN-Light

version for Windows©.

The library defines the following entry points:

HANDLE CAN_Open(WORD wHardwareType, ...);

This function opens a CAN 2.0 channel according to its type (PCI, USB, ISA …) and its channel number

(or some other arguments depending on the chosen type). See the list of HW_xxx symbols defined in

pcan.h to get the list of supported values for wHardwareType.

For example:

#include <libpcan.h>

/* open the 2nd CAN 2.0 PCI channel in the system (first is 0) */

HANDLE h = CAN_Open(HW_PCI, 1);

DWORD CAN_Init(HANDLE hHandle, WORD wBTR0BTR1, int nCANMsgType);

This function initializes an opened CAN 2.0 channel with a bitrate (expressed in BTR0BTR1 SJA1000

format) and a filter set (or not set) to the extended Id of the CAN messages.

See the list of CAN_BAUD_xxx and CAN_INIT_TYPE_XX symbols defined in libpcan.h to get the list of

supported values for wBTR0BTR1 values and nCANMsgType.

For example:

#include <libpcan.h>

/* CAN 2.0 channel handle */

HANDLE h;

DWORD status;

…

/* initialize the CAN 2.0 channel with 500 kbps BTR0BTR1, accepting extended ID. */

status = CAN_Init(h, CAN_BAUD_500K, CAN_INIT_TYPE_EX);

DWORD CAN_Write(HANDLE hHandle, TPCANMsg* pMsgBuff);

This function writes a CAN 2.0 message to a CAN bus through an opened CAN 2.0 channel.

PCAN Driver for Linux v8 – User Manual

40

For example:

#include <libpcan.h>

/* CAN 2.0 channel handle */

HANDLE h;

DWORD status;

TPCANMsg msg;

…

msg.ID = 0x123

msg.MSGTYPE = MSGTYPE_STANDARD;

msg.LEN = 3;

msg.DATA[0] = 0x01;

msg.DATA[1] = 0x02;

msg.DATA[2] = 0x03;

/* write standard msg ID = 0x123. with 3 data bytes 0x01 0x02 0x03

 * (the function may block)

 */

status = CAN_Write(h, &msg);

DWORD CAN_Read(HANDLE hHandle, TPCANMsg* pMsgBuff);

This function reads a CAN 2.0 message received from a CAN bus through an opened CAN 2.0 channel. If

no message has been received, the calling task is blocked.

For example:

#include <libpcan.h>

/* CAN 2.0 channel handle */

HANDLE h;

DWORD status;

TPCANMsg msg;

…

/* wait for a CAN 2.0 msg received from the CAN channel

 * (the function may block)

 */

status = CAN_Read(h, &msg);

DWORD CAN_Status(HANDLE hHandle);

This function returns the status of an opened CAN 2.0 channel (corresponding to the last column

displayed with cat /proc/pcan). The returned value is a bitmask (see the list of CAN_ERR_xxx symbols

defined in pcan.h to get the meaning of each bit).

Note: Reading the status of a channel with this function clears it!

PCAN Driver for Linux v8 – User Manual

41

For example:

#include <libpcan.h>

/* CAN 2.0 channel handle */

HANDLE h;

DWORD status;

…

/* get the status of a CAN 2.0 channel */

status = CAN_Status(h);

DWORD CAN_Close(HANDLE hHandle);

This function closes an opened CAN 2.0 channel. The given handle should not be used next.

For example:

#include <libpcan.h>

/* CAN 2.0 channel handle */

HANDLE h;

…

/* wait for a CAN 2.0 msg received from the CAN channel

 * (the function may block)

 */

CAN_Close(h);

To get profit from the multi-tasking environment of Linux, the library has been extended with the

following LINUX_XXX() functions:

int LINUX_CAN_FileHandle(HANDLE hHandle);

This function returns the file descriptor corresponding to the device node opened by the driver. This is

useful when an application has to wait for more than one read/write event.

HANDLE LINUX_CAN_Open(const char *szDeviceName, int nFlag);

This function opens a CAN 2.0 channel, but with the Linux system device node name instead.

DWORD LINUX_CAN_Read(HANDLE hHandle, TPCANRdMsg* pMsgBuff);

This functions acts like “DWORD CAN_Read(HANDLE hHandle, TPCANMsg* pMsgBuff);”, but returns

extra timestamp information.

DWORD LINUX_CAN_Read_Timeout(HANDLE hHandle, TPCANRdMsg* pMsgBuff, int
nMicroSeconds);

This function acts like “DWORD LINUX_CAN_Read(HANDLE hHandle, TPCANRdMsg* pMsgBuff);”, but,

in case there is no message to read from the CAN, it blocks the calling task for nMicroSeconds at

maximum.

PCAN Driver for Linux v8 – User Manual

42

DWORD LINUX_CAN_Write_Timeout(HANDLE hHandle, TPCANMsg* pMsgBuff, int
nMicroSeconds);

This function acts like “DWORD CAN_Write(HANDLE hHandle, TPCANMsg* pMsgBuff);”, but in case

there is no more room in the transmit queue of the CAN channel, it blocks the calling task for

nMicroSeconds at maximum.

DWORD LINUX_CAN_Extended_Status(HANDLE hHandle, int *nPendingReads, int
*nPendingWrites);

This function acts like “DWORD CAN_Status(HANDLE hHandle);”, but also returns the count of messages

waiting to be read from the receive queue of the channel in *nPendingReads, and the count of

messages waiting to be sent from the transmit queue of the channel in * nPendingWrites.

DWORD LINUX_CAN_Statistics(HANDLE hHandle, TPDIAG *diag);

This function gives some statistics about a CAN 2.0 channel but without clearing the status of this

channel (like “DWORD CAN_Status(HANDLE hHandle);” does).

WORD LINUX_CAN_BTR0BTR1(HANDLE hHandle, DWORD dwBitRate);

This function returns the BTR0BTR1 8 MHz SJA1000 code corresponding to the given bitrate.

5.1.2 CAN FD API

This API is new since version 8 of the driver. It always proposes the entry points and data structures

defined in the old one (see 5.1.1 CAN 2.0 API sur la page 38), but adds definition of some new data

structures and ioctl codes (see pcanfd.h). The old entry points always allow connecting to the CAN 2.0

bus as usual, while the new ones enable to connect to CAN 2.0 and/or CAN FD busses. In other words,

the new API is a new, modern and universal way of accessing the CAN bus. The old entry points are only

kept for ensuring backward compatibility with existing application code.

PCAN Driver for Linux v8 – User Manual

43

#define PCANFD_SET_INIT _IOW(PCAN_MAGIC_NUMBER, PCANFD_SEQ_SET_INIT, \

 struct pcanfd_init)

#define PCANFD_GET_INIT _IOR(PCAN_MAGIC_NUMBER, PCANFD_SEQ_GET_INIT, \

 struct pcanfd_init)

#define PCANFD_GET_STATE _IOR(PCAN_MAGIC_NUMBER, PCANFD_SEQ_GET_STATE, \

 struct pcanfd_state)

#define PCANFD_ADD_FILTERS _IOW(PCAN_MAGIC_NUMBER, PCANFD_SEQ_ADD_FILTERS, \

 struct pcanfd_msg_filters)

#define PCANFD_GET_FILTERS _IOW(PCAN_MAGIC_NUMBER, PCANFD_SEQ_GET_FILTERS, \

 struct pcanfd_msg_filters)

#define PCANFD_SEND_MSG _IOW(PCAN_MAGIC_NUMBER, PCANFD_SEQ_SEND_MSG, \

 struct pcanfd_msg)

#define PCANFD_RECV_MSG _IOR(PCAN_MAGIC_NUMBER, PCANFD_SEQ_RECV_MSG, \

 struct pcanfd_msg)

#define PCANFD_SEND_MSGS _IOWR(PCAN_MAGIC_NUMBER, PCANFD_SEQ_SEND_MSGS, \

 struct pcanfd_msgs)

#define PCANFD_RECV_MSGS _IOWR(PCAN_MAGIC_NUMBER, PCANFD_SEQ_RECV_MSGS, \

 struct pcanfd_msgs)

#define PCANFD_GET_AVAILABLE_CLOCKS _IOWR(PCAN_MAGIC_NUMBER,\

 PCANFD_SEQ_GET_AVAILABLE_CLOCKS,\

 struct pcanfd_available_clocks)

#define PCANFD_GET_BITTIMING_RANGES _IOWR(PCAN_MAGIC_NUMBER,\

 PCANFD_SEQ_GET_BITTIMING_RANGES,\

 struct pcanfd_bittiming_ranges)

#define PCANFD_GET_OPTION _IOWR(PCAN_MAGIC_NUMBER, PCANFD_SEQ_GET_OPTION,\

 struct pcanfd_option)

#define PCANFD_SET_OPTION _IOW(PCAN_MAGIC_NUMBER, PCANFD_SEQ_SET_OPTION,\

 struct pcanfd_option)

These new ioctl codes are also encapsulated by some new entry points of the new libpcanfd library.

These new entry points are defined in libpcanfd.h.

Note: The test application pcanfdtst uses these new entry points.

This new library does not anymore encapsulate CAN channels into any HANDLE objects, but directly

deals with file descriptors returned by the open() system call, made on the corresponding device node.

Note: The old and new APIs are not compatible! Once a CAN channel is opened through one API, it

cannot be used with the other one. In other words, opening a CAN channel selects the API that is

used for the connection.

The new API offers several levels of usage. While Level 1 encapsulates the above ioctl codes, Level 2 API

offers a more friendly way of opening and closing a device node.

Finally, all of the entry points of this new API return an integer value. If it is negative, it must be

interpreted as an error code that equals to –errno.

int pcanfd_set_init(int fd, struct pcanfd_init *pfdi);

This function initializes an opened device node with some new settings that enable to select CAN 2.0 as

well as CAN FD properties (if the corresponding hardware is compatible). These properties are defined by

the new struct pcanfd_init object (see also pcanfd.h):

struct pcanfd_init {

 __u32 flags;

 __u32 clock_Hz;

 struct pcan_bittiming nominal;

 struct pcan_bittiming data;

};

PCAN Driver for Linux v8 – User Manual

44

Field Values Description

flags PCANFD_INIT_LISTEN_ONLY The device is opened in listen-only mode.

PCANFD_INIT_STD_MSG_ONLY Only standard CAN message IDs are transmitted and received. If not set, all

kinds of messages IDs are used for that device.

PCANFD_INIT_FD Open the device for CAN FD ISO access if the device is CAN-FD-capable.

PCANFD_INIT_FD_NON_ISO Open the device for CAN FD non-ISO access if the device is CAN-FD-capable.

PCANFD_INIT_TS_DEV_REL Timestamps set by the driver to the messages received from the CAN bus are

relative to the moment the device is initialized.

PCANFD_INIT_TS_HOST_REL Timestamps set by the driver to the messages received from the CAN bus are

relative to the moment the host has started.

PCANFD_INIT_TS_DRV_REL Timestamps set by the driver to the messages received from the CAN bus will

be relative to the moment the driver has started (default).

PCANFD_INIT_BUS_LOAD_INFO If the CAN bus load is information the corresponding hardware is able to

provide, then the driver will periodically put STATUS messages in the rx fifo

queue of this channel to inform the application of the current bus load the

channel is connected to.

clock 0 The default clock of the CAN device is selected by the driver (default).

any other value The clock frequency (expressed in Hz) to select in the CAN device hardware to

select the right bit timing specifications.

nominal struct pcan_bittiming Defines the nominal bitrate to use to connect to the CAN bus (default value is

defined in Table 2 au-dessus).

data struct pcan_bittiming Defines the data bitrate to select when the device is a CAN FD one, and the

written message flag PCANFD_MSG_BRS is set (default value is defined in Table

2 au-dessus).

Table 7: struct pcanfd_init description

int pcanfd_get_init(int fd, struct pcanfd_init *pfdi);

This function enables the user application to get the initialization settings that are set to an opened

device.

int pcanfd_get_state(int fd, struct pcanfd_state *pfds);

This function gets the current state of an opened device. The state of a CAN channel is summarized in the

new struct pcanfd_state object (see also pcanfd.h):

PCAN Driver for Linux v8 – User Manual

45

struct pcanfd_state {

 __u16 ver_major, ver_minor, ver_subminor;

 struct timeval tv_init; /* time the device was initialized */

 enum pcanfd_status bus_state; /* CAN bus state */

 __u32 device_id; /* device ID, ffffffff is unused */

 __u32 open_counter; /* open() counter */

 __u32 filters_counter; /* count of message filters */

 __u16 hw_type; /* PCAN device type */

 __u16 channel_number; /* channel number for the device */

 __u16 can_status; /* same as wCANStatus but NOT CLEARED */

 __u16 bus_load; /* bus load value, ffff if not given */

 __u32 tx_max_msgs; /* Tx fifo size in count of msgs */

 __u32 tx_pending_msgs; /* msgs waiting to be sent */

 __u32 rx_max_msgs; /* Rx fifo size in count of msgs */

 __u32 rx_pending_msgs; /* msgs waiting to be read */

 __u32 tx_frames_counter; /* Tx frames written on device */

 __u32 rx_frames_counter; /* Rx frames read on device */

 __u32 tx_error_counter; /* CAN Tx errors counter */

 __u32 rx_error_counter; /* CAN Rx errors counter */

 __u64 host_time_ns; /* host time in nanoseconds as it was */

 __u64 hw_time_ns; /* when hw_time_ns has been received */

};

int pcanfd_add_filter(int fd, struct pcanfd_msg_filter *pf);

This function adds a message filter to the device's filters list. When a device is opened, no filters exist for

the device, that is, the application receives all message IDs read from the CAN bus. Adding a message

filter enables to filter among incoming CAN messages which are to pass to the application and which are

to discard. The message filter is described by the new struct pcanfd_msg_filter object (see also

pcanfd.h):

struct pcanfd_msg_filter {

 __u32 id_from; /* msgs ID in range [id_from..id_to] */

 __u32 id_to; /* and flags == msg_flags */

 __u32 msg_flags; /* will be passed to applications */

};

int pcanfd_add_filters(int fd, struct pcanfd_msg_filters *pfl);

This function adds several message filters to the device's filters list at once. The list of messages is saved

into the following struct pcanfd_msg_filters:

struct pcanfd_msg_filters {

 __u32 count

 struct pcanfd_msg_filter list[0];

};

Note: The count field should contain the number of message filters saved in the list[] array field.

PCAN Driver for Linux v8 – User Manual

46

int pcanfd_add_filters_list(int fd, int count, struct pcanfd_msg_filter *pf);

This function adds several message filters to the device's filters list at once. This is a shortcut easier to

use than “int pcanfd_add_filters(int fd, struct pcanfd_msg_filters *pfl);”.

int pcanfd_del_filters(int fd);

This function deletes all the filters linked to device's filters list. No filters do exist anymore for the device,

so the application will receive all message IDs read from the CAN bus. This is the default behavior of a

CAN device when it has been opened.

int pcanfd_send_msg(int fd, struct pcanfd_msg *pfdm);

This function writes a message to the CAN bus through an opened device. The message is defined by the

new struct pcanfd_msg object (see also pcanfd.h):

struct pcanfd_msg {

 __u16 type; /* PCANFD_TYPE_xxx */

 __u16 data_len; /* true length (not the DLC) */

 __u32 id;

 __u32 flags; /* PCANFD_xxx definitions */

 struct timeval timestamp;

 __u8 ctrlr_data[PCANFD_CTRLR_MAXDATALEN];

 __u8 data[PCANFD_MAXDATALEN] __attribute__((aligned(8)));

};

This C structure object is able to carry a CAN 2.0 as well as a CAN FD message. It also can contain some

out-of-band message types (like status messages) that can be pushed by the driver to the application.

Note: Writing a message to the CAN bus might block the calling task, unless the device node has

been opened in non-blocking mode. In that case, -EWOULDBLOCK is returned by this function if the

task had not enough room to store the outgoing message.

Field Values Description

type PCANFD_TYPE_CAN_MSG This message is a CAN 2.0 message (the data_len field cannot be larger than 8).

PCANFD_TYPE_CANFD_MSG This message is a CAN FD message. Bits like PCANFD_MSG_BRS are handled by the

flags field. The data_len field cannot be larger than 64.

data_len <= 8 Number of data bytes to copy from the data field to transmit on the CAN bus.

<= 64 In case of CAN FD message, this value is the true count of bytes to write. The driver

is in charge to adapt this to the corresponding DLC code.

flags PCANFD_MSG_RTR Remote Transmission Request message.

PCANFD_MSG_EXT The message ID is to be coded using 29 bits (the standard message format uses 11

bits only).

PCANFD_MSG_SLF If supported, this message is looped back by the hardware to its internal receive

queue.

PCANFD_MSG_SNG If supported, this message is transmit in Single-Shot mode, that is, if the CAN frame

is not transmitted successfully, no further transmissions are attempted.

PCANFD_MSG_BRS In case of CAN FD, this bit enables the alternate data bitrate for the transport of the

data bytes, instead of the nominal bitrate.

id The ID of the CAN message.

data The data bytes of the CAN message. Only the count of bytes given by data_len

field is copied onto the bus.

Table 8: Usage of struct pcanfd_msg on the transmit side

PCAN Driver for Linux v8 – User Manual

47

int pcanfd_send_msgs(int fd, struct pcanfd_msgs *pfdml);

This function writes a list of messages to the CAN bus through an opened device. The message list is

defined by the new struct pcanfd_msgs object (see also pcanfd.h):

struct pcanfd_msgs {

 __u32 count;

 struct pcanfd_msg list[0];

};

This C structure object is able to carry several CAN 2.0 and CAN FD messages. The number of messages

to write is given by the count field. This field is also used to indicate how many messages have really

been written in the transmit queue of the device.

Note: Writing several messages to the CAN bus might block the calling task, unless the device node

has been opened in non-blocking mode. In that case, -EWOULDBLOCK is returned by this function if

the task had not enough room to store the outgoing messages.

If at least one message has been successfully written in the transmit queue, then the function returns 0.

Otherwise, it returns a negative error code.

Using this function saves memory copies and constant round trips between kernel and user spaces.

Example:

#include <malloc.h>

#include <libpcanfd.h>

int fill_msg(struct pcanfd_msg *pm);

struct pcanfd_msgs *pml;

/* allocate enough room to store 5 CAN messages */

pml = malloc(sizeof(*pml) + 5 * sizeof(struct pcanfd_msg));

pml->count = 5;

for (pml->count = 0; pml->count < 5; pml->count ++) {

 fill_msg(pml->list + pml->count);

}

/* put all of the messages at once in the transmit queue of the device… */

err = pcanfd_send_msgs(fd, pml);

if (err)

 printf("Only %u/5 msgs have been sent because of errno=%d\n",

 pml->count, err)

free(pml);

…

int pcanfd_send_msgs_list(int fd, int count, struct pcanfd_msg *pfdm);

This function writes a list of messages to the CAN bus through an opened device. This is a shortcut easier

to use than “int pcanfd_send_msgs(int fd, struct pcanfd_msgs *pfdml);”.

PCAN Driver for Linux v8 – User Manual

48

int pcanfd_recv_msg(int fd, struct pcanfd_msg *pfdm);

This function reads any pending message the driver might have pushed in the corresponding device

receive queue. This message can be an in band message if it contains a CAN 2.0 or a CAN FD message

received from the CAN bus, or an out-of-band message if it contains a status message.

Note: Reading a message from the driver might block the calling task, unless the device node has

been opened in non-blocking mode. In that case, -EWOULDBLOCK is returned by this function if the

task didn't find any message to read.

Field Values Description

type PCANFD_TYPE_CAN20_MSG This message is a CAN 2.0 message.

PCANFD_TYPE_CANFD_MSG This message is a CAN FD message. Bits like PCANFD_MSG_BRS or

PCANFD_MSG_ESI can also be set in the flags field.

PCANFD_TYPE_STATUS This message is a status message, giving some more information about

the state of the CAN device.

PCANFD_TYPE_ERROR_MSG This message is an error message read from the CAN bus. This kind of

messages ISNOT received by default (see also option

PCANFD_ALLOWED_MSG_ERROR in int pcanfd_set_option(int fd, int name,

void *value, int size);)

data_len Number of data bytes in the message received from the CAN device.

Note that in case of CAN FD, this value might not be the same as the one

given on the transmission side.

id The ID of the CAN message.

flags PCANFD_MSG_RTR Remote Transmission Request message.

PCANFD_MSG_EXT The message ID format is an extended one.

PCANFD_MSG_SLF This message has been looped-back by the hardware to its internal

receive queue.

PCANFD_MSG_SNG This message has been transmitted in Single-Shot mode.

PCANFD_MSG_BRS In case of CAN FD, this bit indicates that data bitrate has been selected

for transmitting the data bytes of the received message.

PCANFD_MSG_ESI CAN FD error indicator: errors detected on the CAN bus.

PCANFD_TIMESTAMP The timestamp field is valued with the timestamp the message has been

received.

PCANFD_HWTIMESTAMP When PCANFD_TIMESTAMP is set, this flag indicates that the given

timestamp is made from the timestamp given by the hardware. If not set,

the timestamp has been built by the driver from the host time.

PCANFD_ERRCNT ctrlr_data[PCANFD_RXERRCNT] and ctrlr_data[PCANFD_TXERRCNT]

contain Rx and Tx error counters read from the CAN controller.

PCANFD_BUSLOAD ctrlr_data[PCANFD_BUSLOAD_UNIT] contains the percentage of the bus

load computed by the hardware controller, while

ctrlr_data[PCANFD_BUSLOAD_DEC] contains the decimal part.

timestamp struct timeval If PCANFD_TIMESTAMP is set in the flag field, then this one indicates the

moment the message has been received. If PCANFD_HWTIMESTAMP is also

set, the given moment is a time made from the hardware clock. If

PCANFD_HWTIMESTAMP is not set, this moment is made by the driver,

from the host current time (see also option in int pcanfd_set_option(int

fd, int name, void *value, int size);).

ctrlr_data CAN-controller-specific data (see PCANFD_ERRCNT and PCANFD_BUSLOAD

flags above).

data The data bytes of the CAN message. The count of data bytes received is

given by the data_len field.

Table 9: Usage of struct pcanfd_msg on the receive side

int pcanfd_recv_msgs(int fd, struct pcanfd_msgs *pfdml);

This function is able to read a list of messages at once from the driver device receive queue. The

messages list is defined by the new struct pcanfd_msgs object (see also pcanfd.h):

PCAN Driver for Linux v8 – User Manual

49

struct pcanfd_msgs {

 __u32 count;

 struct pcanfd_msg list[0];

};

This C structure object is able to carry several CAN 2.0 and CAN FD messages. The maximum number of

messages the list is able to contain must be set in the count field. When returning from this function, the

count field is set by the driver to the real number of copied messages.

Note: Reading several messages from the driver might block the calling task, unless the device node

has been opened in non-blocking mode. In that case, -EWOULDBLOCK is returned by this function if

the task didn't find any message to read.

If at least one message has been successfully read, then the function returns 0. Otherwise, it returns a

negative error code.

Using this function saves memory copies and constant round trips between kernel and user spaces.

PCAN Driver for Linux v8 – User Manual

50

Example:

#include <malloc.h>

#include <libpcanfd.h>

#include <errno.h>

int process_msg(struct pcanfd_msg *pm)

{

 switch (pm->type) {

 case PCANFD_TYPE_CAN20_MSG:

 return process_CAN_2_0_msg(pm);

 case PCANFD_TYPE_CANFD_MSG:

 return process_CAN_FD_msg(pm);

 case PCANFD_TYPE_STATUS:

 return process_status_msg(pm);

 case PCANFD_TYPE_ERROR_MSG:

 /* if enabled, see PCANFD_OPT_ALLOWED_MSGS[PCANFD_ALLOWED_MSG_ERROR] */

 return process_error_msg(pm);

}

return -EINVAL

}

struct pcanfd_msgs *pml;

int i, err;

/* allocate enough room to store at least 5 CAN messages */

pml = malloc(sizeof(*pml) + 5 * sizeof(struct pcanfd_msg));

pml->count = 5;

/* waiting for these messages… */

err = pcanfd_recv_msgs(fd, pml);

if (err)

 exit(1);

/* process the received messages… */

for (i = 0; i < pml->count; i++) {

 process_msg(pml->list + i);

}

free(pml);

…

int pcanfd_recv_msgs_list(int fd, int count, struct pcanfd_msg *pm);

This function is able to read a list of messages at once from the driver device receive queue. This is a

shortcut easier to use than “int pcanfd_recv_msgs(int fd, struct pcanfd_msgs *pfdml);”.

If the return value is positive, then it indicates the real count of messages read from the device input

queue. Otherwise, it's an error code.

int pcanfd_get_available_clocks(int fd, struct pcanfd_available_clocks *pac);

This function returns the list of all the available clocks the underlying CAN/CAN FD device can run with.

The clock is selected at the time the device is initialized (see int pcanfd_set_init(int fd, struct pcanfd_init

*pfdi);).

PCAN Driver for Linux v8 – User Manual

51

/* Device available clocks value */

struct pcanfd_available_clock {

 __u32 clock_Hz;

 __u32 clock_src;

};

struct pcanfd_available_clocks {

 __u32 count;

 struct pcanfd_available_clock list[0];

};

User is responsible to setup the "count" field with the count of items it has allocated in the "list[]"

array.

Example:

struct pcanfd_available_clocks *pac;

int i, err;

/* allocate enough room to store at least 8 clock values */

pac = malloc(sizeof(*pac) + 6 * sizeof(struct pcanfd_available_clock));

pac->count = 6;

/* reading the available clocks list */

err = pcanfd_get_available_clocks(fd, pac);

if (err)

 exit(1);

/* display all available clocks */

for (i = 0; i < pac->count; i++) {

 printf("clock #%u/%u: %u Hz\n", i, pac->count, pac->list[i]);

}

free(pac);

Note: list[0] always contains default clock value. Only CAN FD devices define more than one clock.

int pcanfd_get_bittiming_ranges(int fd, struct pcanfd_bittiming_ranges *pbtr)

This function returns the list of all the available bit timing ranges the underlying CAN/CAN FD device can

run with. The bit timings are selected at the time the device is initialized (see int pcanfd_set_init(int fd,

struct pcanfd_init *pfdi);).

PCAN Driver for Linux v8 – User Manual

52

/* CAN FD bittiming capabilities */

struct pcanfd_bittiming_range {

 __u32 brp_min;

 __u32 brp_max;

 __u32 brp_inc;

 __u32 tseg1_min;

 __u32 tseg1_max;

 __u32 tseg2_min;

 __u32 tseg2_max;

 __u32 sjw_min;

 __u32 sjw_max;

};

struct pcanfd_bittiming_ranges {

 __u32 count;

 struct pcanfd_bittiming_range list[0];

};

User is responsible to setup the "count" field with the count of items it has allocated in the "list[]"

array.

Version 8.2 of the pcan driver always sets 1 in the "count" field for any CAN 2.0 device, while it sets 2 for

any CAN FD device.

Example:

struct pcanfd_bittiming_ranges *pbr;

int err;

/* allocate enough room to store 2 ranges */

pbr = malloc(sizeof(*pbr) + 2 * sizeof(struct pcanfd_bittiming_range));

pbr->count = 2;

/* reading the bit timings ranges list */

err = pcanfd_get_bittiming_ranges(fd, pbr);

if (err)

 exit(1);

if (pbr->count == 1)

 printf("CAN 2.0 device\n");

else

printf("CAN FD device\n");

free(pbr);

int pcanfd_get_option(int fd, int name, void *value, int size);

This function enables to read the current value of an option attached to a channel device. Each channel

handles the same set of options which values are initialized once it is opened. The list of these options is

given below and may evolve over time (see also pcanfd.h).

Getting the value of an option that doesn't exist returns –EINVAL, while getting an unsupported option

(for the device) returns –EOPNOTSUPP. Reading the value of an option with a too small value buffer

returns –ENOSPC.

Successfully reading the value of an option returns the number of bytes that have been copied into

value.

PCAN Driver for Linux v8 – User Manual

53

Option Size (in

bytes)

Description

PCANFD_OPT_CHANNEL_FEATURES 4 The value of this option is a bitmask that gives the features of an opened channel:

PCANFD_FEATURE_FD Channel is CAN-FD capable

PCANFD_FEATURE_IFRAME_DELAYUS Delay can be inserted between frames

PCANFD_FEATURE_BUSLOAD Channel is able to compute bus load

PCANFD_FEATURE_HWTIMESTAMP timestamp are read from the device

PCANFD_FEATURE_DEVICEID Channel can be labeled with a user device id.

PCANFD_OPT_DEVICE_ID 4 Get the user id attached to the channel device (if supported by the channel)

PCANFD_OPT_AVAILABLE_CLOCKS Return the list of clocks available in the channel device. The value returned is of type

pcanfd_available_clocks (see pcanfd.h and int pcanfd_get_available_clocks(int

fd, struct pcanfd_available_clocks *pac);.

Getting this option is equivalent to calling pcanfd_get_available_clocks().

PCANFD_OPT_BITTIMING_RANGES Give the bit timings ranges available for the channel, to specify the nominal bitrate.

These ranges depend on which CAN/CAN-FD controller the channel is equipped with

(see also int pcanfd_get_bittiming_ranges(int fd, struct pcanfd_bittiming_ranges

*pbtr).

PCANFD_OPT_DBITTIMING_RANGES Give the bit timings ranges available for the channel, to specify the data bitrate.

These ranges depend on which CAN-FD controller the channel is equipped with (see

also int pcanfd_get_bittiming_ranges(int fd, struct pcanfd_bittiming_ranges *pbtr).

PCANFD_OPT_ALLOWED_MSGS 4 The value of this option is a bitmask that describes which kind of message an

application is able to receive:

PCANFD_ALLOWED_MSG_CAN CAN/CAN-FD frames

PCANFD_ALLOWED_MSG_RTR RTR frames

PCANFD_ALLOWED_MSG_EXT Extended Id.

PCANFD_ALLOWED_MSG_STATUS STATUS messages

PCANFD_ALLOWED_MSG_ERROR Error from the CAN bus

PCANFD_OPT_ACC_FILTER_11B 8 Get the current acceptance filter code and mask for the standard messages received

on the channel. The high-order 32-bits contain the acceptance code while the low-

order ones contain the acceptance mask.

PCANFD_OPT_ACC_FILTER_29B 8 Get the current acceptance filter code and mask for the extended messages received

on the channel. The high-order 32-bits contain the acceptance code while the low-

order ones contain the acceptance mask.

PCANFD_OPT_IFRAME_DELAYUS 4 Get the value of the delay in µs that is currently inserted by the CAN controller

between each frame it sends.

PCANFD_OPT_HWTIMESTAMP_MODE 4 Get the current mode the driver currently uses to compute the timestamps saved

into each struct pcanfd_msg.

PCANFD_OPT_HWTIMESTAMP_OFF Host time based only (even if hw is capable).

PCANFD_OPT_HWTIMESTAMP_ON Host time base + raw hw time offset.

PCANFD_OPT_HWTIMESTAMP_COOKED Host time base + cooked hw time offset.

PCANFD_OPT_HWTIMESTAMP_RAW Raw hardware timestamps.

Cooked timestamps handle clocks drift between the different clocks systems (PC,

board, USB controller…)

Raw hardware timestamps are 64-bits µs timestamps given by the controller

converted into s. + µs. These timestamps ARE NOT host time related.

int pcanfd_set_option(int fd, int name, void *value, int size);

This function enables to set a value to an option attached to a channel device. Each channel handles the

same set of options which values are initialized once it is opened. The list of the options that can be

changed is given below and may evolve over time (see also pcanfd.h).

Setting the value of an option that doesn't exist, or setting an invalid value to an existing option returns –

EINVAL, while setting a value to an unsupported option (for the device) returns –EOPNOTSUPP.

PCAN Driver for Linux v8 – User Manual

54

Correctly setting a value to an option returns 0.

Option Size (in

bytes)

Description

PCANFD_OPT_DEVICE_ID 4 Set a user numeric value to the channel device (if supported by the channel)

PCANFD_OPT_ALLOWED_MSGS 4 Set what kinds of message the application wants to be notified with. Once opened,

each channel is able to receive:

PCANFD_ALLOWED_MSG_CAN CAN/CAN-FD frames

PCANFD_ALLOWED_MSG_RTR RTR frames

PCANFD_ALLOWED_MSG_EXT Extended Id.

PCANFD_ALLOWED_MSG_STATUS STATUS messages

PCANFD_OPT_ACC_FILTER_11B 8 Set the current acceptance filter code and mask for the standard messages received

on the channel. The high-order 32-bits should contain the acceptance code while the

low-order ones should contain the acceptance mask.

PCANFD_OPT_ACC_FILTER_29B 8 Set the current acceptance filter code and mask for the extended messages received

on the channel. The high-order 32-bits should contain the acceptance code while the

low-order ones should contain the acceptance mask.

PCANFD_OPT_IFRAME_DELAYUS 4 Set the value of the delay in µs that should be inserted by the CAN controller

between each frame it sends, if this controller is able to.

PCANFD_OPT_HWTIMESTAMP_MODE 4 Set the current mode the driver should use to compute the timestamps saved into

each struct pcanfd_msg.

PCANFD_OPT_HWTIMESTAMP_OFF Host time based only (even if hw is capable).

PCANFD_OPT_HWTIMESTAMP_ON Host time base + raw hw time offset.

PCANFD_OPT_HWTIMESTAMP_COOKED Host time base + cooked hw time offset.

PCANFD_OPT_HWTIMESTAMP_RAW Raw hardware timestamps.

Cooked timestamps handle clocks drift between the different clocks systems (PC,

board, USB controller…)

Raw hardware timestamps are 64-bits µs timestamps given by the controller

converted into s. + µs. These timestamps ARE NOT host time related.

int pcanfd_open(char *dev_pcan, __u32 flags, ...);

This function is a shortcut used to open and initialize any PC CAN interface. First parameter is the name

of the device node known by the system. Second argument is a bitmask which indicates what the next

parameters of the function are, and their sequence order, as well as the PCANFD_INIT_xxx flags used to

initialize the CAN controller (see also libpcanfd.h and pcanfd.h).

Table 10 describes the order and how each bit of the flags argument is interpreted:

Bit Description

OFD_BITRATE The specification of the nominal bitrate starts with the third parameter:

If OFD_BTR0BTR1 is set too, then the third parameter is interpreted as a 16-bit value

respecting the BTR0BTR1 SJA1000 format.

If OFD_BRPTSEGSJW is specified, then the 3rd, 4th, 5th, and 6th parameters are

interpreted as BRP, TSEG1, TSEG2, and SJW values.

If none of the above bits is set, then the third argument is interpreted as a bits-per-

second value.

OFD_SAMPLEPT Argument next to the nominal bitrate is the minimal sample point rate requested. If

not specified, the driver uses its own default value. If specified, this value must be

expressed in 1/10000th (that is, 8750 stands for 87,5 %)

PCAN Driver for Linux v8 – User Manual

55

OFD_DBITRATE The data bitrate is given in the next arguments:

If OFD_BTR0BTR1 is set too, then the next parameter is interpreted as a 16-bit value

respecting the BTR0BTR1 SJA1000 format.

If OFD_BRPTSEGSJW is specified, then the 4 next parameters are interpreted as BRP,

TSEG1, TSEG2 and SJW values.

If none of the above bits is set, then the next argument is interpreted as a bits-per-

second value.

OFD_DSAMPLEPT Argument next to the data bitrate is the minimal sample point rate requested. If not

specified, the driver uses its own default value. If specified, this value must be

expressed in 1/10000th (that is, 8750 stands for 87,5 %)

OFD_CLOCKHZ The clock frequency (in Hz) to select in the CAN controller is given in the next

argument.

OFD_NONBLOCKING The device node is opened in non-blocking mode.

PCANFD_INIT_xxx All of these flags are used to initialize the CAN device, as if it was initialized using

“int pcanfd_set_init(int fd, struct pcanfd_init *pfdi);”.

Table 10: Usage of the flags argument of pcanfd_open()

Example:

#include <libpcanfd.h>

int fd;

/* open the 1st CANFD channel of the PCAN-USB Pro FD and set 1Mbps+2Mbps bitrate */

fd = pcanfd_open("/dev/pcanusbprofd0",

 OFD_BITRATE|OFD_DBITRATE,

 1000000,

 2000000);

…

5.2 netdev Mode

The PCAN Driver for Linux is built in netdev mode, that is, with:

$ make –C driver NET=NETDEV_SUPPORT

In this case the user application can neither use the libpcan nor the libpcanfd library, but has to be

built over the socket API instead. The programmer can access the online documentation, starting, for

example, at these links:

 https://en.wikipedia.org/wiki/SocketCAN

 https://www.kernel.org/doc/Documentation/networking/can.txt

https://en.wikipedia.org/wiki/SocketCAN
https://www.kernel.org/doc/Documentation/networking/can.txt

