

© Commonplace Robotics GmbH 1

Robot Interface CRI

V17 – March 28th, 2024

CPRog Version: V902-14-002

TinyCtrl Version: V980-14-002

Major changes since V16 (iRC V13) are marked in green!

Please refer to earlier versions of this document if you are using iRC/CPRog V13 or earlier!

Change Log

• V17 / March 28th, 2024: Version 17

1. Summary

The CRI interface allows clients to observe, control and configure a robot. It is the main interface that the

igus Robot Control (iRC) or CPRog uses to communicate with the robot and therefore enables most

functions that are available in iRC/CPRog including moving the robot, selecting and starting programs,

changing variable values etc.

For development and testing the iRC / CPRog simulation on PC provides a CRI server.

The CRI protocol is based on TCP and sending human-readable text-based messages. It can be used via LAN

and WLAN.

For the development of applications, the
user application can interact with igus
Robot Control / CPRog. The commands
are then executed by the simulated robot
arm.

The real robot can be controlled with the
same protocol, simply change the IP
address and port number.

© Commonplace Robotics GmbH 2

Robots without embedded control, e.g.
the Mover robots, can also be
commanded using the CRI interface.
Simply connect to the PC software like in
the simulation case.

In the following chapters only CPRog or iRC may be mentioned. All functions are available in both – CPRog

and iRC are the same software with different branding.

2. Example and Test Software

An example client software is available via Github:

https://github.com/CommonplaceRobotics/CRI-DemoClient

It is available as binary for testing your CRI commands and as C# source code (Visual Studio project). Please

refer to the source code on how to set up a connection or if you are not sure how to format certain

messages. Consider the demo client a minimal example, for reliable use further error handling should be

implemented.

Standard IP addresses:

• PC simulation: 127.0.0.1

• Embedded control: 192.168.3.11

Standard port numbers:

• PC simulation: 3921-3931 (the simulation picks the first available port, see

the log or CRI section in the interface configuration)

• Embedded control: 3920

The client computer needs to have an IP in the same subnet as the embedded robot control, e.g.

192.168.3.1. Step by step instructions how to change the IP address can be found on the internet.

The following steps show a simple test of the CRI demo client. You may want to start a simulation in

CPRog/iRC beforehand.

https://github.com/CommonplaceRobotics/CRI-DemoClient

© Commonplace Robotics GmbH 3

The steps are:

1. Connect the CRI test client with CPRog.

2. If connected to a real robot: Click the enable button to reset the errors and enable the motors.

3. Choose the motion type: joint motion or linear motion in base or tool coordinate system.

4. Press e.g. the Z- button one or several times. The simulated robot will move in axis 1. Each time you

press the button the velocity will increase by 10%.

5. Press the Stop button to stop all jog motions. Start the loaded robot program with the Start button.

3. Multi-Client support

The CRI server supports multiple concurrent connections. To prevent colliding commands only one of these

connections can be active (is allowed to send commands that change settings or start actions), all others

are passive (can only request information and observe the robot’s state).

If no active connection is present the next connection will be set active. If the active client disconnects the

other connected clients will stay passive. Use the CMD GetActive command to check if the connection is

active and the CMD SetActive true/false command to request a passive connection to become active. Listen

to the CMD Active message for state changes. The iRC/CPRog GUI becomes active when you click the Reset

button.

4. Definition of the CRI Interface

4.1 Description

• The robot control sets up a server. Clients can connect to the following port:

o Real robot: 3920

o Simulation: 3921 – 3931 (the simulation picks the first available port, see the log or CRI

section in the interface configuration)

© Commonplace Robotics GmbH 4

• When the robot control does not receive at least one alive message every second it will close the

connection.

• The operating system needs to allow the client-server connection. Configure your firewall etc.

accordingly.

• Messages to and from the server follow the scheme:

“CRISTART counter CMD_CATEGORY command_parameters CRIEND”

All messages from the server do have an incrementing sCnt as first parameter, the messages from

the client an independent cCnt. Both are incremented with each message from 1 to 9999, then

reset to 1.

• All values are sent in US style (with points as delimitator). Position and angle units are mm and

degrees.

4.2 Alive Message and Status Answer

The ALIVEJOG message must be sent regularly otherwise the server will close the connection. An interval of

20 – 50msis recommended if jog motion is used or 200 – 500ms if you do not need frequent updates. The

maximum interval is about 1s.

The message includes the current jog values for the 6 robot joints and 3 external joints. The jog values are

float numbers in the range of [-100.0 .. 100.0]. If you do not want the robot to move set all 9 values to 0!

The servers periodically sends the STATUS and RUNSTATE message. These do not need to be responded to

by the client.

Alive Message from Client to server (format):
CRISTART cCnt ALIVEJOG ja1 ja2 ja3 ja4 ja5 ja6 je1 je2 je3 CRIEND

No motion:
CRISTART 1234 ALIVEJOG 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CRIEND

Jog axes (numbers are percent of max axis velocity):
CRISTART 1234 ALIVEJOG 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 CRIEND

Status Message from Server to Client (implemented in one line):
CRISTART 1234 STATUS MODE joint

POSJOINTSETPOINT 1.00 2.00 3.00 …. 15.00 16.00

POSJOINTCURRENT 1.00 2.00 3.00 …. 15.00 16.00

POSCARTROBOT 10.0 20.0 30.0 0.00 90.00 0.00

POSCARTPLATFORM 10.0 20.0 180.00

OVERRIDE 80.0

DIN 0 DOUT 0

ESTOP 3 SUPPLY 23000 CURRENTALL 2600

CURRENTJOINTS 150 200 … 140 160

ERROR no_error 8 8 8 … 8 8 8

KINSTATE 3

OPMODE -1

CARTSPEED 123.4

GSIG 0af56

FRAMEROBOT MyFrame 1.0 2.0 3.0 4.0 5.0 6.0

CRIEND

© Commonplace Robotics GmbH 5

Explanations for the status answer:

• The different modes are:

o “joint” The jog values move the robot arm (1-6) and the up to 3 additional

 joints in joint space. In CPRog/iRC V902-11 and older the gripper is

 controlled instead of additional joints.

o “cartbase” The jog values move the robot arm in Cartesian space (base

 coordinate system) and the gripper in joint space.

o “carttool” The jog values move the robot arm in Cartesian space (tool

 coordinate system) and the gripper in joint space.

o “platform” A mobile platform is jogged with velocities in X, Y and RZ

o “fsm” Jog not supported in this mode

• In POSJOINT, CURRENTJOINTS and ERROR always 16 values are provided (values are zero if the

joints are not available). Different module types follow each other directly in the following order.

Use “CONFIG GetAxes” to get the number of modules of each type.

o Up to 6 values for the robot arm joints

o Up to 3 values for the external joints

o Up to 3 values for the gripper

o Up to 4 values for the mobile platform joints

• Joint positions as floating point: POSJOINTSETPOINTS contains the set point joint positions in

degree. POSJOINTCURRENT contains the current physical joint positions.

• Cartesian positions: values are provided in mm and degree

o POSCARTROBOT: the XYZ and ABC values of the robot arms TCP

o POSCARTPLATFORM: Position XY and rotation RZ of the mobile platform. These values are

derived by the wheel odometry and not reliable because of drift and slipping effects.

• Override: The override value from 0 to 100 (floating point)

• DIN and DOUT: Current status of digital Inputs / Outputs (64 bit hexadecimal, one bit per

IO)

• ESTOP: Status of Emergency Stop (bit 1) and Main Relay (bit2). 3 means ok.

• SUPPLY: Level of the main supply in V

• CURRENTALL: Motor current for all joints measured by the safety board in mA. The

 current of the electronics (Linux board and joint controller) is not included.

• CURRENTJOINTS: Motor current of the single joints in mA

• ERROR: One combined error value as string and 16 single byte joint error codes.

 The errors are:

o Bit 1: Temp - Overtemperature

o Bit 2: EStop/LowV - Supply too low

o Bit 3: MNE Motor not enabled

o Bit 4: COM - Communication watch dog

o Bit 5: POS - Position lag

o Bit 6: ENC - Encoder error

o Bit 7: OC - Overcurrent

o Bit 8: DRV – DriverError / SVM

• KINSTATE: Kinematic Status

© Commonplace Robotics GmbH 6

o 0: No error

o 13,14 Joint Limit Min, Max

o 21,23,24 Cartesian Singularities Center, Reach, Wrist

o 30-35 Tool reached virtual box limit

o 99 Motion not allowed, e.g. due to boards not enabled

• OPMODE: State of the safety switches:

o -1 Operation mode not enabled

o 0 Normal operation / auto mode: no limit

o 1 Manual mode: Velocity limited

o 2 No motion allowed

• CARTSPEED: Cartesian velocity in mm/s

• GSIG: Global signals (128 bit hexadecimal, one bit per GSig)

• Positions in current frame: values are provided in mm and degrees.

o FRAMEROBOT: name of the currently active frame followed by the XYZ and ABC values of

the robot arms TCP with respect to the currently active frame.

Runstate messages from Server to Client (implemented in two messages of one line each):
CRISTART 1234 RUNSTATE <type> <main program> <current program> <number of

commands in current program> <current command> <run state> <replay mode>
Example:

CRISTART 1234 RUNSTATE MAIN testmotion.xml pickpart.xml 12 3 0 2 CRIEND

CRISTART 1234 RUNSTATE LOGIC testlogic.xml testlogic.xml 12 3 0 2 CRIEND
The robot runs the motion program “testmotion.xml”, currently command number 3

of 12 of sub program “pickpart.xml”. The current run state is 0 (stopped) and

the replay mode is 2 (single step).

The robot runs the logic program “testlogic.xml”...

• The runstates are:

o 0 Stopped

o 1 Paused

o 2 Running

• The replay modes are:

o 0 Single

o 1 Repeat

o 2 Step

o 3 Fast

Power Supply Message from Server to Client (implemented in one line):
CRISTART 1234 SUPPLY status CRIEND

Example:

CRISTART 1234 SUPPLY 78.9 CRIEND

If the robot is a mobile platform the battery status (charge in percent) will

be regularly sent by the robot control.

4.3 Disconnecting

© Commonplace Robotics GmbH 7

It is fine to disconnect the client by simply closing the TCP socket. The server detects the closed connection

either when sending a message fails or after the ALIVEJOG times out (1-2s).

For an immediate and clean disconnect the client can send QUIT. This helps with fast reconnects: When a

client connects while the server-side socket is not closed yet the new connection will be passive until the

client sends the SetActive request (see section “Multi-Client Support”).

CRISTART 1234 QUIT CRIEND

4.4 Information Messages

CRISTART 1234 INFO GetProjectInfo CRIEND

Requests the basic project info: The user-defined robot name and the

configuration author. These may be empty if not set.

CRISTART 1234 INFO GetProjectInfo “RobotName” “ConfigAuthor” CRIEND

CRISTART 1234 INFO SetProjectInfo “RobotName” “ConfigAuthor” CRIEND

Sets the user-defined robot name and the configuration author. These may be

empty. Special characters like ‘”’ must be escaped with a backslash.

4.5 Status Messages

Additional to the STATUS message the following status messages are sent automatically. They are sent at a

lower frequency than than the STATUS message.

CRISTART 1234 RUNSTATE progName commandsCnt curCommand state playmode CRIEND

progName is the name of the currently loaded program or “None” if no program is

loaded.

commandsCnt is the number of commands in the loaded program

curCommand is the number of the currently running (sub-)program or -1 of no

program is running

state is 0 if the program is not running, 1 if it is paused, 2 if it is running

play mode is the replay mode: single run = 0, repeated = 1, step = 2

CRISTART 1234 GRIPPERSTATE value CRIEND

value is the current opening value of the gripper

CRISTART 1234 OPINFO nrProgStartsTotal upTimeComplete upTimeEnabled

upTimeMotion upTimeLast lastProgramDuration nrProgramStartsSinceStartup CRIEND

This message includes statistics values: The total number of program starts,

the total uptime, the time in enabled state, the time while moving and the

uptime before the previous shutdown. lastProgramDuration is in milliseconds.

CRISTART 1234 CYCLESTAT cycletime workload CRIEND

This message includes cycle statistics:

Cycletime: Average cycle time of the kinematics loop in ms

Workload: Percentage of the cycle used for calculations etc. (i.e. not waiting)

CRISTART 1234 CAMINFO CameraResult type name status parameters CRIEND

Sends the camera results if a camera is connected and set up. Type and name as

described in CONFIG SetCamera.

Status values: INACTIVE, NOTCONNECTED, CONNECTED, ERROR

Parameters depend on camera type:

Type “IFMO2D”: posX posY posZ oriA oriB oriC modelClass

Type “SolutionBinPicking”: posX posY posZ oriA oriB oriC modelClass

More types might be added in future.

CRISTART 1234 CAMINFO CameraImage name imagedata CRIEND

Sends the camera images if a camera is connected and set up. Name as described

in CONFIG SetCamera, imagedata is either “NOIMAGE” or Base64 encoded image

data.

© Commonplace Robotics GmbH 8

CRISTART 1234 VARIABLES <varList> CRIEND

Sends the values of any variables that are declared on the remote system.

<varList> is a (possibly empty) sequence of variable values where each element

is encoded by the following schema:

Number variables are encoded as

ValueNrVariable <varName> <varValue>

Where <varName> is the name of the variable and <varValue> its value (floating

point number).

Position variables are encoded as

ValuePosVariable <varName> <x> <y> <z> <A> <C> <a1> <a2> <a3> <a4> <a5>

<a6> <e1> <e2> <e3>

Where <varName> is the name of the variable and the result is 15 float values

encoded by <x>, <y>, <z>, <A>, , <C>, <a1>, <a2>, <a3>, <a4>, <a5>, <a6>,

<e1>, <e2>, <e3>.

CRISTART 1234 USERFRAMES <activeFrame> <userFrames> CRIEND

Sends the values of any variables that are declared on the remote system.

<activeFrame> is the name of the currently active (aka used for jogging) user-

defined reference frame. If no userFrame is currently active a value of #none

will be reported.

<userFrames> is a (possibly empty) sequence of user defined reference frames,

which are encoded as

<name> <A_X> <A_Y> <A_Z> <B_X> <B_Y> <B_Z> <C_X> <C_Y> <C_Z> <T01> … <T16>

<name> Is the name of the user-defined reference frame

<A_X> … <C_Z> are the X,Y,Z coordinates of the three points A,B,C that define

the frame.

<T01> … <T16> are the entries of the 4x4 transformation matrix associated with

the frame in column-major format.

This message is typically sent by the server to the client whenever a user-

defined reference frame has been added, removed or modified, or the currently

active user-defined reference frame was changed, but may be sent unsolicited by

the server to the client, occasionally.

CRISTART 1234 CONFIG ProjectFile <filename> CRIEND

Notifies the client that the project file has been changed or modified.

4.6 Robot Commands

Robot commands are send to operate the robot arm, e.g. to enable the motors, to choose the operation

mode or to start and stop robot programs. The general format is:

CRISTART cCnt CMD commandname [parameter] CRIEND

The server sends an acknowledge or an error after receiving the command unless a different response is

specified. The cnt number is the same as in the command message:

CRISTART sCnt CMDACK ref_to_cCnt CRIEND

© Commonplace Robotics GmbH 9

CRISTART sCnt CMDERROR ref_to_cCnt error_description CRIEND

CRISTART 1234 CMD SaveConfig CRIEND

Writes the configuration. Normally writing the project configuration is delayed

by ca. 15s, this command writes the queued changes immediately.

CRISTART 1234 CMD Connect CRIEND

CRISTART 1234 CMD Disconnect CRIEND

CRISTART 1234 CMD Reset CRIEND

CRISTART 1234 CMD Enable CRIEND

CRISTART 1234 CMD Disable CRIEND

CRISTART 1234 CMD SetJointsToZero CRIEND

CRISTART 1234 CMD ReferenceAllJoints CRIEND

Requests a referencing of all joints

CRISTART 1234 CMD ReferenceSingleJoint j CRIEND

Requests the referencing of a single joint.

j is the identifier of the joint consisting of a letter for the joint type and

a number for the index within that type, e.g.: “A1”, “E2”. Available types are

“A” – robot axes, “E” – external axes, “T” – tool axes, “P” – platform axes.

The index number starts at 0.

CRISTART 1234 CMD GetReferencingInfo CRIEND

Sends information on the current status of the joints, if they are referenced

or not. The server provides the status of the robot joints, and, if available,

external joints. The information contains the general status and 12 values for

the single joint referencing status.

Example answer:

CRISTART 1234 INFO ReferencingInfo 1 Joints 1 1 1 1 2 0 0 0 0 0 0 0 Mandatory 1

RefWithProg 1 1 CRIEND

Meaning: The value before “Joints” describes the robot status as a combination

of bits:

• Bit 1: all joints are referenced

• Bit 2: any joint is referencing

The 12 values (may be extended in future) behind “Joints” are the referencing

status of each joint. Their values are the same bit combinations as described

above. In this example the first 4 joints are referenced and the fifth is

currently referencing. The external axes always start at the 7th position.

The value following “Mandatory” tells whether the robot needs to be referenced

to allow cartesian motion and program execution.

The tag “RefWithProg” and the following values are available with TinyCtrl V13-

040 and newer. The first number is 1 if the referencing program is enabled to

run after “reference all” and 0 otherwise. The second number is 1 if the

referencing program process (including referencing) is currently running.

CRISTART 1234 CMD ReferenceWithProg CRIEND

Starts the referencing program without “reference all” beforehand. The motors

must be enabled and the robot must be referenced. After the program finished

successfully all axes are re-referenced.

CRISTART 1234 CMD MotionTypeJoint CRIEND

CRISTART 1234 CMD MotionTypeCartBase CRIEND

CRISTART 1234 CMD MotionTypeCartTool CRIEND

CRISTART 1234 CMD MotionTypePlatform CRIEND - only with mobile base

Sets the motion type for jog motion.

CRISTART 1234 CMD Move <Type> 0 0 0 0 0 0 0 0 0 <velocity> [<frame>] CRIEND

Starts a motion to a specific position. The parameters depend on type:

Joint or RelativeJoint: 6 robot joint values, 3 external joint values.

© Commonplace Robotics GmbH 10

Cart, RelativeBase: 3 cartesian position values, 3 orientation values, 3

external joint values and a string with the name of the associated frame of

reference.

RelativeTool: 3 cartesian position values, 3 orientation values, 3 external

joint values.

Note: Currently the orientation is ignored by RelativeBase and RelativeTool.

In case of joint motion the last value is velocity in percent of maximum

velocity (1-100). In case of cartesian the motion velocity is in mm/s.

If this command is sent while an earlier motion is not finished yet the

previous motion will be stopped and replaced by the new one. Robot Program

execution has higher precedence than this command while this command has higher

precedence than jog motion.

When the target position is reached or if an error occurred the same messages

will be sent as during robot program execution.

CRISTART 1234 CMD Move Stop CRIEND

Stops a CMD Move motion.

CRISTART 1234 CMD ZeroTorque True/False

Requests to enable/disable the zero-torque mode. This has no effect if this

mode is not enabled in the robot configuration file. Motor modules must support

torque mode. After disabling the motors are in Disabled state.

CRISTART 1234 CMD ZeroTorque

Requests information on the zero-torque mode.
Both commands send the following reply:

CRISTART 1234 CMD ZeroTorque <allowed> <enabled>

Both parameters are True/False. <allowed> shows whether zero torque mode is

enabled in the robot configuration, <enabled> shows whether it is enabled.

CRISTART 1234 CMD DOUT 3 true CRIEND

Sets the state of a digital output. The DOut number is 0 .. 63. This has no

effect if a program is running.

CRISTART 1234 CMD DIN 3 true CRIEND

Sets the state of a simulated digital input. The DIn number is 0 .. 63. This is

only available in simulation mode.

CRISTART 1234 CMD GSIG 3 true CRIEND

Sets the state of a global signal. The GSig number is 0 .. 99.

A status message in the following format is sent periodically:

CRISTART 1234 GSIG lower upper CRIEND

lower and upper are 64 bit decimal numbers encoding the global signal states.

CRISTART 1234 CMD Override ovr CRIEND

Sets the override for jog motion and replay.

ovr is a floating-point value from 0.0 to 100.0

CRISTART 1234 CMD GetVersion CRIEND

Requests the Software name (“TinyCtrl” or “CPRog”) from the server along with

the protocol version implemented by the server. Example answer:

CRISTART 1234 INFO Version CPRog 16 CRIEND

In this case the server is CPRog and implements CRI-Commands up to protocol

version 16.

CRISTART 1234 CMD StartProgram CRIEND

CRISTART 1234 CMD StopProgram CRIEND

CRISTART 1234 CMD PauseProgram CRIEND

CRISTART 1234 CMD ProgramReplayMode replayMode CRIEND

© Commonplace Robotics GmbH 11

replayMode is an integer defining the replay mode for the current and further

programs started.

replayMode = 0 Single replay

replayMode = 1 Repeated replay

replayMode = 2 Stepwise replay, the replay is paused after each command and

has to be continued with the StartProgram command.

CRISTART 1234 CMD StartProgramWithOffset j0 .. j8 x y z a b c CRIEND

Starts a program with the defined offset values. The offset values are added to

the target positions of Joint/JointbyVariable and Linear/LinearbyVariable

motions. They do not affect relative motions.

The offsets are valid until another program is loaded, the automatic restart or

the manual start do not change the offsets. The use of the StartProgram command

as above (e.g. when pressing on Start in CPRog) or loading a program will reset

the offset to zero.

Setting and resetting the offsets will generate a logfile entry.

Attention: There is no check for validity of the values, if the values are e.g.

too high the program will stop with an out-of-reach error or similar.

j0 .. j8 are the 9 floating point offsets for the 9 possible joints

x .. c are the floating point offsets for the cartesian coordinates

Example:

CRISTART 6789 StartProgramWithOffset 10 -10.0 5 -5.0 0.0 0.0 0.0 0.0 0.0 30.0

20.0 10.0 0.0 0.0 0.0 CRIEND

CRISTART 1234 CMD StartAt progName commandIndex CRIEND

Sets the command to start at. This command has no effect if a program is

running.

If the program file progName is not loaded yet it will be loaded. The program

is set to paused and the command commandIndex (starting at 0 for the first

command) is set to be the next command.

After the requested program finishes: The parent program will continue if the

requested program was paused at. Otherwise execution will stop.

CRISTART 1234 CMD LoadProgram progName CRIEND

Load a program file from disk into the robot controller. progName is the name

in the Directory /Data/Programs/, e.g. “test.xml”. Programs loaded before are

erased. The program is loaded as program 0. From CRI version 16 onwards, this

command can also be used to open a folder.

CRISTART 1234 CMD LoadLogicProgram progName CRIEND

Available in CRI version 16 and newer

Load a logic program file from disk into the robot controller. progName is the

name in the Directory /Data/Programs/, e.g. “test.xml”. Programs loaded before

are erased. The program is loaded as program 0.

CRISTART 1234 CMD DeleteProgram CRIEND

Removes all loaded programs from the robot control (not from the disk). This

commands should be called before assembling a new program with Add-commands.

CRISTART 1234 CMD DeleteLogicProgram CRIEND

Removes all logic programs from the robot control (not from the disk).

CRISTART 1234 CMD DeleteProgramFromFileSystem progName CRIEND
Available on TinyCtrl only.

Deletes the file progName in the /Data/Programs/ directory permanently. It is

removed from the disk and cannot be restored.

“progName” has to be the filename of the program, e.g. “testmotion.xml”. The

path /Data/Programs/ is added automatically.

CRISTART 1234 CMD GetProgramInfo CRIEND

© Commonplace Robotics GmbH 12

Sends an answer with the currently active programs name, the number of commands

in the program and the currently active command.

Example:

CRISTART 1234 INFO ProgramInfo testmotion.xml 12 3 CRIEND

The robot runs the program “testmotion.xml”, currently command 3 of 12 is

active.

CRISTART 1234 CMD GetLogicProgramInfo CRIEND

Available in CRI version 16 and newer

Sends an answer with the currently active logic programs name, the number of

commands in the program and the currently active command.

CRISTART 1234 INFO LogicProgramInfo testmotion.xml 12 3 CRIEND

CRISTART 1234 CMD GetActive CRIEND

CRISTART 1234 CMD SetActive true/false CRIEND

GetActive requests the active/passive state of the CRI connection. If the

connection is passive all commands that change the state of the robot control

will be ignored. SetActive requests the CRI connection to set active or

passive, in the former case all connections to other clients will be set

passive.

The following response will be sent by both requests and on state change:

CRISTART 1234 CMD Active true/false CRIEND

4.7 File Transfer

CRISTART 1234 CMD ListFiles <folder> CRIEND

Tells the server to send a list of all files in the directory specified by

<folder>, this must be relative to the Data directory. The reply will have the

following form. All entries are also relative to Data.

CRISTART 6789 INFO FileList <folder> “<file_1>” … “<file_n>” CRIEND

CRISTART 1234 CMD UploadFileInit fileName nrOfLines xferMode CRIEND

To upload a file to the /Data/ directory a combination of the commands

UploadFileInit, UploadFileLine and UploadFileFinish must be send. These

commands only write the file to the drive. The file must be loaded afterwards

using LoadProgram.

UploadFileInit initializes the upload. fileName is a string with the file name

relative to the /Data/ directory (this means that you need to prepend

“Programs/” to your program name).

nrOfLines is an integer with the number of UploadFileLine commands following.

Between sending the lines there should be small breaks to allow sending the

Alive messages

xferMode sets the transfer mode as defined for CMD DownloadFile. This parameter

is optional, if it is missing text mode is used.

CRISTART 1234 CMD UploadFileLine fileLine CRIEND

For every line of the original file one command UploadFileLine must be send.

fileLine is a string with the line to be written.

CRISTART 1234 CMD UploadFileChunk idx fileLine CRIEND

Like UploadFileLine but with a chunk index. This must be used for binary

transfers, text transfers may use either UploadFileChunk or UploadFileLine.

fileLine is a string with the line to be written.

CRISTART 1234 CMD UploadFileFinish CRIEND

This command finishes the file upload by closing it. It also compares the

received number of lines with the anticipated number.

© Commonplace Robotics GmbH 13

CRISTART 1234 CMD DownloadFile <xferMode> <remoteFile> CRIEND

This command tells the remote system that the download of a specific file ist

requested.

<remoteFile> is the filename of the requested file on the remote system. It

should be relative to the Data folder.

<xferMode> designates the desired transfer mode. The following modes are

defined:

<xferMode> = 0: Text-based file transfer is desired: the remote system

will send the requested file as individual text lines.

<xferMode> = 1: Base64-based file transfer is desired: the remote system

will send the requested file as multiple base-64 encoded chunks of binary

data. This mode is recommended, since it allows any type of file to be

transferred.

If the requested file does not exist on the remote system, the remote system

will reply with this error message:

CRISTART 6789 CMDERROR 1234 File not found. CRIEND

If the file does exist on the remote system, the download will be performed by

the remote system via the following sequence of commands (sent from the remote

system):

To start the file transfer, the remote system will send

CRISTART 1234 CMD DownloadFileInit <xferMode> CRIEND

This is followed by one or more chunks of the requested file:

CRISTART 1234 CMD DownloadFileChunk <idx> <data> CRIEND

where <idx> is the number of the current chunk (starting with 0) and <data> is

• A single line of the requested file, when <xferMode>=0

• Up to 100kB of base64 encoded binary data (ca. 133kB of character data)

that make up the currently transferred chunk of the requested file

Finally, when all parts of the requested file have been transferred, the

downloading is terminated with

CRISTART 1234 CMD DownloadFileFinished <counter> CRIEND

where <counter> is the total number of lines or chunks (depending on the

transfer-mode) that have been transferred.

4.8 System Commands

CRISTART 1234 SYSTEM Shutdown <number> CRIEND

<number> = 99: Stops the robot control software

<number> = 100: Shuts down the entire system

<number> = 101: Restarts the entire system

<number> = 102: Sends a restart message to the motor modules (not supported by

all hardware protocols and hardware module versions)

CRISTART 1234 SYSTEM GetBoardTemp CRIEND

Provides the temperatures of the motor control PCBs.

Example Answer:

CRISTART 6789 INFO BoardTemp temp1 temp2 ... temp16 CRIEND

© Commonplace Robotics GmbH 14

temp1 to temp16 are the PCB temperatures of the joint 1 to 16. The values are

°C transmitted as floating point numbers.

CRISTART 1234 SYSTEM GetMotorTemp CRIEND

Provides the temperatures of the motor control PCBs.

Example Answer:

CRISTART 6789 INFO MotorTemp temp1 temp2 ... temp16 CRIEND

temp1 to temp16 are the PCB temperatures of the joint 1 to 16. The values are

°C transmitted as floating point numbers.

4.9 User-defined reference frames

CRISTART 1234 CMD DefineUserFrame <name> CRIEND

Uses the values currently contained in the system variables #userframe-a,

#userframe-b, #userframe-c to create a new user-defined reference frame named

<name>. If a user-defined reference frame with that name already exists, it

will be overwritten.

Note that the created reference frame will always be orthonormal.

Sending this message to the server will cause the server to reply with a

USERFRAMES message (see the documentation of Status-Messages for details).

CRISTART 1234 CMD RequestUserFrames CRIEND

Sending this message to the server will cause the server to reply with a

USERFRAMES message (see the documentation of Status-Messages for details).

CRISTART 1234 CMD DeleteUserFrame <name> CRIEND

Deletes the user-defined reference frame name <name>

Sending this message to the server will cause the server to reply with a

USERFRAMES message (see the documentation of Status-Messages for details).

CRISTART 1234 CMD SelectUserFrame <name> CRIEND

Select the user-defined reference frame named <name> as the currently active

user-defined reference frame.

Sending this message to the server will cause the server to reply with a

USERFRAMES message (see the documentation of Status-Messages for details).

4.10 Log Messages

The remote systems can transfer its log messages to the CRI client. This functionality can be switched on or

off in the ini files of the remote system.

CRISTART 1234 LOGMSG <logLvlString> <timeStamp> <msgString> CRIEND

Provides the log messages from the remote system. They can be used e.g. for

diagnostics.

<logLvlString> is a string indicating the severity of the log message. It can

be one of the following: DEBUG, APP_INFO, APP_ERROR, INFO, WARN, ERROR, FATAL.

<timeStamp> is an integer that indicates the number of milliseconds that have

© Commonplace Robotics GmbH 15

been elapsed since the start of the control software on the remote system.

<msgString> the string that forms the actual log message.

© Commonplace Robotics GmbH 16

4.11 Handling of Variables

CRISTART 1234 VAR GetNrVariable variableName CRIEND

Sends an answer with the value of a number variable. The result is one float

value. The variable must be defined in the running robot or logic program and

the program must have passed the defining Store command.

Example of an answer:

CRISTART 1234 VARINFO ValueNrVariable currentRow 3.0 CRIEND

The variable currentRow has the value 3.0.

Example of an answer in case of an error, e.g. when the variable is not known:

CRISTART 6789 VARERROR ValueNrVariable currentRow variable_not_known CRIEND

CRISTART 1234 VAR GetPosVariable variableName CRIEND

Sends an answer with the value of a position variable. The result is 15 float

values. The variable must be defined in the running robot or logic program and

the program must have passed the defining Store command.

Example of an answer (x-z, A-C, a1-a6 and e1-e3 will be float values):

CRISTART 1234 VARINFO ValuePosVariable currentPos x y z A B C a1 a2 a3 a4 a5 a6

e1 e2 e3 CRIEND

Example of an answer in case of an error, e.g. when the variable is not known:

CRISTART 6789 VARERROR ValuePosVariable currentPos variable_not_known CRIEND

CRISTART 1234 VAR GetSystemVariable variableNumber CRIEND

Sends an answer with the value of a system variable. The result is one int

value.

System variables are (number, name and meaning):

0 UpTimeComplete Time the control is running [Minutes]

1 UpTimeLast Time the control is running since the last start [Minutes]

2 UpTimeEnabled Time the control was in “NoError” state [Minutes]

3 UpTimeMotion Time the robot has been moving [Minutes]

4 ProgramStarts Number of starts of the main program

10 JointCycles Number of direction changes in joint 1

..

18 JointCycles Number of direction changes in joint 9

Example of an answer:

CRISTART 1234 VARINFO ValueSystemVariable 0 Value 10429 CRIEND

The control has been running for 10429 minutes.

Example of an answer in case of an error, e.g. when the variable is not known:

CRISTART 6789 VARERROR ValueSystemVariable 22 variable_not_known CRIEND

The system variable number 22 is not known.

CRISTART 1234 VAR SetVariableSingle variableName newValue CRIEND

Sets the value of a variable. The argument variableName can be the name of a

number variable (e.g. nrOfRows). It cannot be an element of a position variable

(e.g. targetPos.x).

The variable must be defined in the running robot or logic program and the

program must have passed the defining Store command.

Standard answer is an acknowledgement:

CRISTART 6789 CMDACK 1234 CRIEND

Example of an answer in case of an error, e.g. when the variable is not known:

CRISTART 6789 CMDERROR 1234 variable_not_known CRIEND

CRISTART 1234 VAR SetVariablePosCart variableName x y z a b c e1 e2 e3 CRIEND

Sets the value of a variable. The argument variableName is the name of a

position variable (e.g. targetPos). The Cartesian elements of the variable are

updated. The joint elements of the variable remain on their old values.

© Commonplace Robotics GmbH 17

The variable must be defined in the running robot or logic program and the

program must have passed the defining Store command.

Standard answer is an acknowledgement:

CRISTART 6789 CMDACK 1234 CRIEND

Example of an answer in case of an error, e.g. when the variable is not known:

CRISTART 6789 CMDERROR 1234 variable_not_known CRIEND

CRISTART 1234 VAR SetVariablePosJoint variableName j0 j1 .. j5 e1 e2 e3 CRIEND

Sets the value of a variable. The argument variableName is the name of a

position variable (e.g. targetPos). The joint elements of the variable are

updated. The cartesian elements of the variable remain on their old values.

The variable must be defined in the running robot or logic program and the

program must have passed the defining Store command.

Standard answer is an acknowledgement:

CRISTART 6789 CMDACK 1234 CRIEND

Example of an answer in case of an error, e.g. when the variable is not known:

CRISTART 6789 CMDERROR 1234 variable_not_known CRIEND

CRISTART 1234 VAR GetNrVariableList CRIEND

Returns a list of all currently defined number variables. The returned list

will be a sequence of variable names, separated by a blank space. An Example of

an answer:

CRISTART 1234 VARLIST NR variableName1 variableName2 … CRIEND

CRISTART 1234 VAR GetPosVariableList CRIEND

Returns a list of all currently defined number variables. The returned list

will be a sequence of variable names, separated by a blank space. An Example of

an answer:

CRISTART 1234 VARLIST POS variableName1 variableName2 … CRIEND

© Commonplace Robotics GmbH 18

4.12 Defining a Robot Program

The following messages add robot commands to the currently loaded program on the robot control. To

take effect the robot program must be started using the CMD messages (start, pause, stop). The deletion of

all commands can also be done using the CMD message.

With the cmdCnt number the client can provide an id to the program command. This id is used when there

are further messages regarding the program command, e.g. error or execution acknowledgments.

The server sends an acknowledgement or an error after receiving the message, the cnt number is the same

as in the command message.

CRISTART sCnt PROGACK ref_to_cCnt ref_to_cmdCnt CRIEND

CRISTART sCnt PROGERROR ref_to_cCnt ref_to_cmdCnt errordescription CRIEND

Currently the following error descriptions are used: unknown_command, incomplete_argument,

could_not_parse, system_error

CRISTART cCnt PROG cmdCnt JOINT j0 … j5 EXT j6…j8 VEL velpercent CRIEND

Example: CRISTART 1234 PROG 42 JOINT 10.00 20.00 30.00 40.00 50.00 60.00 EXT

70.0 80.0 90.0 VEL 20.0 CRIEND

Adds a joint command to the current robot program. The joint values (degree,

floating point) for the 6 robot joints and 3 additional joints are defined. The

VEL parameter (percent [0..100] floating point) defines the joint velocity in

percent.

During replay all joints move with a constant velocity to the set point values,

the velocities depend on the joint with the longest travel time.
CRISTART cCnt PROG cmdCnt RELATIVEJOINT j0 … j5 EXT j6…j8 VEL velpercent CRIEND

Example: CRISTART 1234 PROG 42 RELATIVEJOINT 10.00 20.00 30.00 40.00 50.00

60.00 EXT 70.0 80.0 90.0 VEL 20.0 CRIEND

Adds a relative joint command. The parameters are as described for the JOINT

command.

CRISTART 1234 PROG cmdCnt LINEAR x y z a b c EXT j6…j8 VELMMS velmms USERFRAME

<frame> CRIEND

Example: CRISTART 1234 PROG cmdCnt LINEAR 10.0 20.0 30.0 40.0 50.0 60.0 EXT

70.0 80.0 90.0 VELMMS 20.0 USERFRAME #base CRIEND

Adds a linear command to the current robot program. The x-z, a-c values define

a cartesian coordinate with respect to the provided user frame <frame>, j6-j8

define additional joints. The VEL parameter defines the linear velocity in

mm/s.

CRISTART 1234 PROG cmdCnt RELATIVELINEAR 50.0 50.0 50.0 125.0 USERFRAME <frame>

CRIEND

Adds a linear command that does a movement relative to the coordinate system

given by <frame>. The values are x, y and z cartesian coordinates, the fourth

value is the motion speed in mm/s. All values are float.
CRISTART 1234 PROG cmdCnt RELATIVETOOL 50.0 50.0 50.0 125.0 CRIEND

Adds a linear command that does a movement relative to the tool coordinate

system. The values are x, y and z cartesian coordinates, the fourth value is

the motion speed in mm/s. All values are float.
CRISTART 1234 PROG cmdCnt GRIPPER grpJoint1 jrpJoint2 grpJoint3 CRIEND

© Commonplace Robotics GmbH 19

Example to open the gripper: CRISTART 345 PROG 81 GRIPPER 100.0 0.0 0.0 CRIEND

Adds a Gripper statement to the end of the current robot program.

cmdCnt is an integer as reference to the command

grpJoint1 to 3 are floating point values for the gripper joints ranging from

0.0 to 100.0. A maximum of 3 gripper joints can be commanded (currently only

one is supported!). For single joint gripper only the first value is used.

The robot control does not wait for the execution of this command, the next

command is issued in the next cycle. It might be necessary to add a wait

command after the gripper command e.g. to ensure that the workpiece gets

gripped.

CRISTART 1234 PROG cmdCnt WAIT timeInMS CRIEND

Example to wait 5 seconds: CRISTART 827 PROG 23 WAIT 5000 CRIEND

Adds a wait statement to the end of the current robot program.

cmdCnt is an integer as reference to the command

timeInMS is the wait time in milliseconds

CRISTART 1234 PROG cmdCnt DOUT doutNum true CRIEND

Adds a command that enables or disables a digital output. The doutNum is offset

by 1 in the CPRog UI, this means that DOut21 in CPRog is number 20 in this

command.

© Commonplace Robotics GmbH 20

4.13 Execution of Robot Programs

After the start of a robot program the server sends messages regarding the current execution status to the

client, e.g. “just started execution of command nr 462” or “just reached end of linear motion nr 90”.

CRISTART sCnt EXECACK cmdNr progNr programName CRIEND

When the program is paused the following message is generated:

CRISTART sCnt EXECPAUSE cmdNr progNr programName CRIEND

When the program execution ends an according message is generated:

CRISTART sCnt EXECEND cmdNr progNr programName reason CRIEND

In the case of an error during execution an according message is generated:

CRISTART sCnt EXECERROR cmdNr progNr programName errordescription CRIEND

Parameter Type Description

cmdNr Int The command currently being executed in the program

progNr

progNr Int The nr of the program currently being executed. The

nr refers to the programs loaded in the robot

controller, not to the files in the folder

/Data/Programs.

For single programs this parameter is 0.

When there are subprograms this parameter can be 1,

2, …, depending on the nr of subprograms.

reason String Reason for stopping the execution:

PLAN Program finished correctly as programmed

USER The user stopped the program execution

PLC The PLC interface stopped the program exec.

ERROR An external error stopped the execution,

 e.g. emergency stop.

errordescription String Description of the error, e.g. “JointLimits Min

exceeded…”

Only program execution errors are listed here, not

external errors that cause a fault in the complete

robot system (emergency stop, overtemperature, …)

These are available interpreting the error code and

the EXECEND reason.

Remarks:

• When the robot executes the program in “repeat” mode the EXECEND message is not sent.

• When pausing and restarting a program there will be two EXECACK messages for the current

command: one when the command is getting active in the program flow before pausing; the

second when the command is reactivated after resuming.

• The EXECERROR messages is send e.g. when joint min/max values are exceeded, or in case of

singularities.

© Commonplace Robotics GmbH 21

• If the robot does not start a program, e.g. due to an error or due to missing referencing, there will

be no EXECACK message.

4.14 Kinematic Commands

CRISTART 1234 KINEMATIC TranslateToCart a1 a2 a3 a4 a5 a6 e1 e2 e3 CRIEND

Requests a coordinate conversion from joint angles to cartesian position and

orientation. At least one joint value must be given, further may be omitted.

On success the following response is sent with the same message ID. The given

joint angles are also returned to help assigning the result.

CRISTART 1234 KINEMATIC Result X Y Z A B C a1 a2 a3 a4 a5 a6 e1 e2 e3 CRIEND

On error (e.g. when the message could not be parsed or if the position

is not reachable) the following message is sent:

CRISTART 1234 KINEMATIC Error <error text> CRIEND

CRISTART 1234 KINEMATIC TranslateToJoint X Y Z A B C CRIEND

Requests a coordinate conversion from cartesian position and orientation to

joint angles. The same response messages are sent as mentioned for

TranslateToCart.

4.15 Configuration Commands

The configuration commands are sent to the robot to query or change configuration parameters.

CRISTART 1234 CONFIG GetAxes CRIEND

Queries the axis configuration. The following response will be sent:

CRISTART 1234 CONFIG Axes <count> A1 <param> A2 <param> […] A6 <param> E1

<params> … T1 <params> … P1 <params> … CRIEND

The response contains one set of parameters for each axis, axes that are not

present are omitted. The label describes the axis type (A – robot, E –

external, T – tool, P - platform) and number.

The axis parameter set may be empty or may contain the following parameters.

Parameters may be omitted at the end of the set. Further parameters may be

added in future.

<params> = <CAN ID> <pos min> <pos max> <vel max>

CRISTART 1234 CONFIG GetDIOModules CRIEND

Requests the CAN IDs of the DIO modules.

The response contains the module count and a set of parameters for each module.

The parameter set starts with the word “MODULE” and contains the parameters

shown below. The parameters may be extended in future. All values are integers.

CRISTART 1234 CONFIG DIOModules moduleCount [MODULE canID inputCount

outputCount firstInput firstOutput]* CRIEND

CRISTART 1234 CONFIG SetDIOModules [[canID1] ... canID10] CRIEND

Enables or disables DIO modules and sets their CAN IDs.

Up to 10 CAN IDs (0 - 255) can be given. Missing IDs or IDs set to 0 means all

following modules are not present.

A DIOModules response (see GetDIOModules) is sent with the new configuration.

CRISTART 1234 CONFIG GetDOutDefaults CRIEND

Requests the DOut default values as described in SetDOutDefaults.

CRISTART 1234 CONFIG DOutDefaults ResetStates0-31 ResetStates32-63

ErrorStates0-31 ErrorStates32-63 CRIEND

CRISTART 1234 CONFIG SetDOutDefaults ResetStates0-31 ResetStates32-63

ErrorStates0-31 ErrorStates32-63 CRIEND

Sets the DOut states that are set on reset and error. The parameters are 64 bit

hexadecimal values. Each two bit represent one DOut port:

00 false

© Commonplace Robotics GmbH 22

01 true

10 no change

11 reserved

The DOutDefaults response is sent with the new configuration.

CRISTART 1234 CONFIG GetInputNames CRIEND

CRISTART 1234 CONFIG GetOutputNames CRIEND

CRISTART 1234 CONFIG GetGSigNames CRIEND

Requests the names of the digital inputs and outputs. The response contains a

list of names wrapped in ‘”’ and separated by spaces. Up to 64 input/output

entries or 100 GSig entries are sent.

CRISTART 1234 CONFIG InputNames “DIn1 name” “DIn2 name” … CRIEND

CRISTART 1234 CONFIG OutputNames “DOut1 name” “DOut2 name” … CRIEND

CRISTART 1234 CONFIG OutputNames “GSig1 name” “GSig2 name” … CRIEND

CRISTART 1234 CONFIG SetInputNames “DIn1 name” “DIn2 name” … CRIEND

CRISTART 1234 CONFIG SetOutputNames “DOut1 name” “DOut2 name” … CRIEND

CRISTART 1234 CONFIG SetGSigNames “GSig1 name” “GSig name” … CRIEND

Sets the names of the digital inputs or outputs. Names are wrapped in ‘”’ and

separated by spaces. Up to 64 input/output entries or 100 GSig entries may be

sent, further are ignored. Empty names must be sent as ‘””’.

The InputNames, OutputNames or GSigNames response is sent with the new

configuration.

CRISTART 1234 CONFIG SetGantryLength x y z CRIEND

Sets the axis length of a portal robot for visualization purposes. Use

SetKinematicLimits to change the kinematic axis lengths. The parameters are

floating point values.

TinyCtrl will write this change to its robot configuration file.

CRISTART 1234 CONFIG GetGantryLength CRIEND

Requests the axis length of a gantry robot as described in SetGantryLength.

Response:

CRISTART 1234 CONFIG GantryLength x y z CRIEND

Implemented for gantry robots only

CRISTART 1234 CONFIG SetKinematicLimits A1Min A1Max A2Min A2Max... CRIEND

Sets the kinematic axis lengths. The number of parameters depends on the robot

type, the upper limit is 9 pairs of minimum and maximum values. The parameters

are floating point values.

TinyCtrl will write this change to its robot configuration file.

Implemented for gantry robots only

CRISTART 1234 CONFIG GetKinematicLimits CRIEND

Requests the kinematic axis lengths. The response contains up to 9 value pairs

as described in SetKinematicLimits:

CRISTART 1234 CONFIG KinematicLimits A1Min A1Max A2Min A2Max... CRIEND

CRISTART 1234 CONFIG SetPLCInterface inEnable inRequestReference inPlay

outNoFault outProgramRunning outRobotIsReferenced inPause inAltStart inAltStop

inShutdown inAddJointCommand inAddLinearCommand outError outProgramNotRunning

outPlatformMissionRunning CRIEND

Sets the PLC interface numbers. The parameters are integer numbers, -1 means

the input or output is disabled. All parameters after outRobotIsReferenced are

optional. Parameters after inPause are supported with Version CPRog/iRC and

TinyCtrl 13-014 and newer.

TinyCtrl will write this change to its project configuration file.

CRISTART 1234 CONFIG GetPLCInterface CRIEND

Requests the PLC interface numbers. The response contains these values as

described in SetPLCInterface. Parameters after outRobotIsReferenced will only

be sent if they are supported.

CRISTART 1234 CONFIG PLCInterface inEnable inRequestReference inPlay outNoFault

outProgramRunning outRobotIsReferenced inPause inAltStart inAltStop inShutdown

inAddJointCommand inAddLinearCommand outError outProgramNotRunning

outPlatformMissionRunning CRIEND

CRISTART 1234 CONFIG SetPLCInterfaceEnabled active autoConnect CRIEND

Enables or disables the PLC interface and the auto connect function.

© Commonplace Robotics GmbH 23

active and autoConnect must be ‘True’ or ‘False’.

TinyCtrl will write this change to its project configuration file.

CRISTART 1234 CONFIG GetPLCInterfaceEnabled CRIEND

Requests the PLC enabled and autoConnect states. The response contains these

values as described in SetPLCInterfaceEnabled:

CRISTART 1234 CONFIG PLCInterfaceEnabled active autoConnect CRIEND

CRISTART 1234 CONFIG GetPLCTriggers CRIEND

Requests the PLC program trigger configuration. The response are one or more

messages of the following format:

CRISTART 1234 CONFIG PLCTrigger 0 0

No PLC triggers configured

CRISTART 1234 CONFIG PLCTrigger num cnt active signalType signalNum targetType

filename

PLC program trigger definition. Num is the index of the specified trigger

(starting at 0), cnt is the count of all triggers. Active can be “True” or

“False”, signalType can be “DIn” or “GSig”, signalNum is the number of the

input, it may be negative if invalid. targetType is the type of program that is

triggered: “Program” or “Mission”. Filename is the path of the program,

relative to Data/Programs/ or Data/Missions/. It may be “none” if no program is

defined. More parameters may be added in future. Space characters are not

allowed.
CRISTART 1234 CONFIG ClearPLCTriggers CRIEND

Removes all PLC triggers.

CRISTART 1234 CONFIG AddPLCTrigger active signalType signalNum targetType

filename CRIEND

Adds a PLC program trigger. The parameters are defined as described in

GetPLCTrigers.

CRISTART 1234 CONFIG SetBrake brakeDOut delay estopDIn CRIEND

Sets the brake DOut number and the E-Stop monitoring Din number. Max 63, -1 to

disable. Delay is the brake release delay in ms. Older robot controls only

support brakeDOut.

CRISTART 1234 CONFIG GetBrake CRIEND

Requests the brake DOut number and the E-Stop monitoring Din number. If

disabled -1 is returned. Delay is the brake release delay in ms. Older robot

controls may only send brakeDOut.

CRISTART 1234 CONFIG Brake brakeDOut delay estopDIn CRIEND

CRISTART 1234 CONFIG SetProgramDefaultState defaultState CRIEND

defaultState is an integer defining the default state after an error or reset.

defaultState = 0 Paused

defaultState = 1 Stopped

CRISTART 1234 CONFIG GetProgramDefaultState CRIEND

Requests the program default state as defined in SetProgramDefaultState.

CRISTART 1234 CONFIG ProgramDefaultState defaultState CRIEND

CRISTART 1234 CONFIG SetCamera type name parameters CRIEND

Sets camera parameters. The parameters depend on the type:

Type “None”: No parameters, removes the camera if it exists.

Type “IFMO2D” (IFM O2D camera): active IP port scaleX scaleY originX originY

originZ lookX lookY lookZ upY upY upZ zDistance imageEnabled [coordinate type]

Type “SolutionBinPicking”: active IP port originX originY originZ lookX lookY

lookZ upY upY upZ zDistance imageEnabled

active and imageEnabled must be ‘True’ or ‘False’, IP must be IPv4 address

string, port must be integer, all further parameters are floating point

numbers. Coordinate type is 0 for image coordinates (px) or 1 for robot

coordinates (mm).

More types might be added in future.

CRISTART 1234 CONFIG GetCameras CRIEND

Requests all camera configurations. Each camera configuration will be sent as a

separate response in the following format:

CRISTART 1234 Camera count type name parameters CRIEND

Count is the total number of cameras. Type, name and parameters are as

© Commonplace Robotics GmbH 24

described in SetCamera.

CRISTART 1234 CONFIG ClearCameras CRIEND

Removes all cameras.

Deprecated since V13

CRISTART 1234 CONFIG SetExternalAxes number [parameters] [parameters]

[parameters] CRIEND

Sets the external axes configuration. Number describes the number of external

axes, 0 disables all external axes (only 0-1 supported in CPRog/iRC <= V902-11-

023 and TinyCtrl <= V980-11-100). For each external axis a set of parameters

follows in the following format:

Type kinematic canid gearscale min max velmax acc accinc [directionAngleToY lz0

dir offset]

Type is a string stating the axis type. It must not contain a whitespace. “na”

if no type is given.

Kinematic must be “Dependent” or “Independent”

Canid is the CAN-module ID

The last four parameters may be missing if only one axis is specified and are

only relevant if kinematic is set to “Dependent”.

This configuration will only be applied after saving the project and reloading

it (CPRog/iRC) or restarting the robot control (TinyCtrl)

CRISTART 1234 CONFIG GetExternalAxes2 CRIEND

Requests the external axes configuration. Each axis will be sent as a separate

message. The parameters are as described in SetExternalAxis. cntTotal is the

total number of external axes, number is the index of the axis specified in

this message.

CRISTART 1234 CONFIG ExternalAxis cntTotal number kinematic jointMode canid

gearscale min max velmax acc accinc directionAngleToY lz0 dir offset CRIEND

If no external axis is configured the following message will be sent:

CRISTART 1234 CONFIG ExternalAxis 0 0 CRIEND

Implemented in TinyCtrl V12-020 and newer.

CRISTART 1234 CONFIG SetModbus active port maxConnections CRIEND

Configures the Modbus server. Active must be ‘True’ or ‘False’, port must be a

number of the range 0 – 65535 (standard is 502), maxConnections must be a

number greater than 0, standard is 5.

CRISTART 1234 CONFIG GetModbus CRIEND

Requests the Modbus server configuration. Parameters are as described in

SerModbus. Response:

CRISTART 1234 CONFIG Modbus active port maxConnections CRIEND

CRISTART 1234 CONFIG SetTool filename showButtons CRIEND

Sets the tool configuration filename or “none” to remove the tool. The file

must be present at the robot control. showButtons defines whether the gripper

buttons are shown in the GUI, this optional value must be true or false.

Optional parameters might be added in future.

The following response will be sent if the file does not exist:

CRISTART 1234 CONFIGERROR Tool invalid_file CRIEND

CRISTART 1234 CONFIG GetTool CRIEND

Requests the tool configuration filename. showButtons is true or false, it

defines whether the gripper buttons are be shown in the GUI. Optional

parameters might be added in future.

CRISTART 1234 CONFIG Tool filename showButtons CRIEND

CRISTART 1234 CONFIG SetVBox enabled xmin xmax ymin ymax zmin zmax CRIEND

Sets the virtual box configuration. ‘enabled’ must be True or False, the

parameters are float values.

CRISTART 1234 CONFIG GetVBox CRIEND

Requests the virtual box configuration as described for SetVBox.

CRISTART 1234 CONFIG VBox enabled xmin xmax ymin ymax zmin zmax CRIEND

CRISTART 1234 CONFIG SetCloudConnection enabled CRIEND

CRISTART 1234 CONFIG SetCloudConnection enabled "MyClientID" "CloudUser"

"Passwd" CRIEND

© Commonplace Robotics GmbH 25

Sets the cloud connection information: ‘enabled’ enables the cloud interface,

it must be True or False. The client ID must be unique for the given cloud

user. CloudUser is the registration email-address on RobotDimension, Passwd is

the robot password that can be set on RobotDimension. The password may contain

special characters including whitespace.

If client ID, user or password is empty ("") the cloud interface will be

disabled. Quotation marks must be used.

CRISTART 1234 CONFIG SetCloudInfo "robot name" "robot owner" CRIEND

Sets the optional information that will be sent to the cloud. The parameters

may include special characters including whitespace. Quotation marks must be

used. Further parameters may be added in future.

CRISTART 1234 CONFIG GetCloud CRIEND

Requests the cloud information. The following response will be sent. This

message will also be sent automatically if the connection state changes.

Further parameters may be added to the response in future.

CRISTART 1234 CONFIG Cloud enabled areCredentialsSet isConnected "MyClientID"

"robot name" "robot owner" CRIEND

‘enabled’, ‘areCredentialsSet’ and ‘isConnected’ will be True or False.

CRISTART 1234 CONFIG GetReferencingProgram CRIEND

Gets the referencing program configuration.

Response:

CRISTART 1234 CONFIG ReferencingProgram <program> <afterRefAll> CRIEND

See “SetReferencingProgram” for the format of the parameters.

CRISTART 1234 CONFIG SetReferencingProgram <program> <afterRefAll> CRIEND

Sets the referencing program and defines whether the referencing program is run

after “reference all”. <program> is a program file relative to Data/Programs or

“n/a” for no program. <afterRefAll> is true or false.

4.16 App Commands

App commands can be used to install, configure and communicate with apps.

CRISTART 1234 LICENSE GetInfo CRIEND

Requests license information.

The following response will be sent:

CRISTART 1234 LICENSE Info <valid/invalid> <evaluation period> <date> <owner>

CRIEND

Evaluation period is the remaining number of seconds that all extended features

can be used without license.

CRISTART 1234 APP List CRIEND

Requests a list of apps and their states.

Response:

CRISTART 1234 APP List <app1> … <appN> CRIEND

Each <app> entry has the following format: APP “<name>” <enabled> <running>

<splitscreen> <processes>

<enabled>, <running> and <splitscreen> are boolean values (true/false/1/0).

Each <process> entry has the following format: PROC “<executable>” <running>

CRISTART 1234 APP Install <filename> CRIEND

Installs one or more apps from a zip archive. <filename> must be path to a zip

file relative to the Data directory. The file must exist and could be uploaded

using “CMD UploadFile”. Folders in the root directory of the zip file must

contain a rcapp.xml configuration file, otherwise they will be skipped.

Existing app directories will not be overwritten.

CRISTART 1234 APP Update <filename> CRIEND

Updates one or more app directories from a zip archive. Only certain files are

copied (e.g. binaries and the rcapp.xml), configuration files are kept. The

format is equal to “APP Install”. The app(s) to update must be disabled,

otherwise they may be skipped.

© Commonplace Robotics GmbH 26

CRISTART 1234 APP <appname> Enable CRIEND

Enables an app and starts it. The app will be started when the robot control

restarts.

CRISTART 1234 APP <appname> Disable CRIEND

Disables an app and stops it. The app will not be started when the robot

control restarts.

CRISTART 1234 APP <appname> Remove CRIEND

Removes an app. The app must be disabled, otherwise the command has no effect.

CRISTART 1234 APP <appname> Backup CRIEND

Requests a backup of an app’s directory. This includes the configuration files,

binaries and all other files.

The response contains the path to a zip file relative to the Data directory, it

can the be downloaded using “CMD DownloadFile”. In case of an error the string

“failed” and an optional reason is sent.

CRISTART 1234 APP <appname> Backup <file> CRIEND

CRISTART 1234 APP <appname> Backup failed <reason> CRIEND

CRISTART 1234 APP <appname> SplitScreen <enabled> CRIEND

Enables or disables split screen mode. <enable> is a Boolean value

(true/false). When enabling split screen mode will be disabled for all other

apps. You can get the status of this parameter using APP List.

CRISTART 1234 APP <appname> UIEvent <uielementname> <uitype> <parameters>

CRIEND

This message contains UI updates coming from the app or other CRI clients. This

event will be forwarded to the app and other CRI clients.

<uitype> can be one of the following (further types may be added in future).

The parameters depend on this type.

uitype description parameters

boolean Check boxes, toggle buttons <bool> (true/false)

click Button clicked <bool> (true if clicked, false

on release)

clickat Image clicked <bool> <x> <y> (true if

clicked, coordinates in image

in percent 0..1)

combo

image

number Number box value changed <number> in decimal format

text Text box or combo box

selection changed

“<text>” (note the ‘”’, ‘”’

and ‘\’ within the text must

be escaped by ‘\’)

toggle Check boxes, toggle buttons <bool> (true/false)

The app sends UI updates to all connected CRI clients. The update message is similar to the “APP

UIElement” request:

CRISTART 1234 APP <appname> UIUpdate <uielementname> <uitype> <parameters> CRIEND

uitype description parameters

boolean Check boxes, toggle buttons <bool> (true/false)

click Button clicked <bool> (true if clicked, false

on release)

clickat Image clicked <bool> <x> <y> (true if

clicked, coordinates in image

in percent 0..1)

combo Combobox items changed “<selected item>” “<item1>” …

“<itemN>” (note the ‘”’, items

must be formatted as explained

for uitype “text”)

© Commonplace Robotics GmbH 27

image Image changed <data> (image file data in

base64 format)

number Number box value changed <number> in decimal format

text Text box or combo box

selection changed

“<text>” (note the ‘”’, ‘”’

and ‘\’ within the text must

be escaped by ‘\’)

toggle Check boxes, toggle buttons <bool> (true/false)

When the CRI client first connects the server registers all active apps and their UI definition by sending the

following messages:

CRISTART APP <appname> Register <configuration> CRIEND

CRISTART APP <appname> RegisterUI <uidefintion> CRIEND

These messages are sent for each app. <configuration> contains the rcapp.xml file content, <uidefinition>

the ui.xml file content. RegisterUI is only sent if there is any UI definition.

4.17 Licensing Commands

License information can be queried via the following commands. Installing new licenses is done via SSH.

CRISTART 1234 LICENSE GetInfo CRIEND

Requests license information.

The following response will be sent:

CRISTART 1234 LICENSE Info <valid/invalid> <evaluation period> <date> <owner>

CRIEND

Evaluation period is the remaining number of seconds that all extended features

can be used without license.

CRISTART 1234 LICENSE GetFeatures CRIEND

Requests information features that are enabled by the installed license.

The following response will be sent:

CRISTART 1234 LICENSE Features <list of features> CRIEND

<list of features> is a list of strings separated by semicolon. Additional

parameters may be added to the entries in future.

CRISTART 1234 LICENSE GetDeviceID CRIEND

Requests the device ID that is needed for a license request.

The following response will be sent:

CRISTART 1234 LICENSE DeviceID <ID> CRIEND

<ID> is a SHA256 hash encoded as a hex string

4.18 Mobile Platform commands

Not implemented in V14

Commands for the mobile platform are categorized in the following groups:

• PLTF – general commands

• PLTFMAP – platform map

• PLTFMISSION – platform mission

• SEQPLTF – modifies commands within a mission

© Commonplace Robotics GmbH 28

Platform commands currently are not final and may change!

4.18.1 PLTF

CRISTART 1234 PLTF ResetPosition <pos x> <pos y> <ori> CRIEND

Resets the platform position at the given coordinates (in m) and orientation

(in degrees).

CRISTART 1234 PLTF RequestInfo CRIEND

Resets information about the platform configuration. The CRI-Server will reply

with an answer of the form

CRISTART 1234 PLTF Info <ConfigFolderName> CRIEND

Where <ConfigFolderName> is the relative path of the platform configuration

folder (relative to the Data folder). If no platform is available the value of

<ConfigFolderName> will be #NONE.

4.18.2 PLTFMAP

CRISTART 1234 PLTFMAP FileInfo CRIEND

Requests the filename of the loaded map.

The following response will be sent if a map is loaded:

CRISTART 1234 PLTFMAP FileInfo <filename> CRIEND

The following response will be sent if no map is loaded:

CRISTART 1234 PLTFMAP FileInfo none CRIEND

CRISTART 1234 PLTFMAP OccGrid CRIEND

Requests the occlusion grid.

The following response will be sent if an occlusion grid is available. Width

and height are in pixels, data is a base64 encoded PNG image. Currently the

message size for a 200x200 grid is about 2kB, however this may change in

future.

CRISTART 1234 PLTFMAP OccGrid <width> <height> <data> CRIEND

4.18.3 PLTFMISSION

CRISTART 1234 PLTFMISSION Start CRIEND

Starts or continues a mission, if loaded.

CRISTART 1234 PLTFMISSION Stop CRIEND

Stops a mission and robot program (same effect as CMD StopProgram).

CRISTART 1234 PLTFMISSION Pause CRIEND

Pauses a mission and robot program (same effect as CMD PauseProgram).

CRISTART 1234 PLTFMISSION Replay <mode> CRIEND

Sets the replay mode of the mission:

single: Do not repeat mission after it finishes

repeat: Repeat mission after it finishes

step: Pause after each platform command, do not repeat

CRISTART 1234 PLTFMISSION GetStatus CRIEND

Requests the status of the mission. The following response will be sent:

CRISTART 1234 PLTFMISSION Status <runstate> <replaymode> <collOverride>

<seqState> <missionname> CRIEND

Runstate can be one of the following values: NotRunning, Running, Paused

Replaymode can be one of the following values: Single, Repeat, Step,

CollOverride is the collision override in percent

SeqState is the number of the current platform command

Missionname is the file name of the mission or none

CRISTART 1234 PLTFMISSION Load <filename> CRIEND

© Commonplace Robotics GmbH 29

Loads the mission from the given filename.

CRISTART 1234 PLTFMISSION Save <filename> CRIEND

Saves the mission to the given filename.

CRISTART 1234 PLTFMISSION Delete CRIEND

Deletes the mission from memory but not from disk. A Waypoint response will be

sent indicating that no commands are loaded (see the following command).

CRISTART 1234 PLTFMISSION GetWaypoint <idx> CRIEND

Requests the mission command at the given index.

The following response will be sent if the command exists:

CRISTART 1234 PLTFMISSION Waypoint <cnt> <idx> <definition> CRIEND

If no commands are loaded or if the index is out of range the following

response will be sent. In the former case cnt is 0.

The command definition depends on the command:

MovePos <X> <Y> <speed>

MovePosOri <X> <Y> <orientation> <speed>

Wait <duration in s>

Approach <distance> <speed>

Precision <X> <Y> <orientation> <speed>

RobotArmCommand <program name>

Turn <angle> <speed>

The number values can be decimal values (dot ‘.’ as separator). Speed is in

percent 0-1.

CRISTART 1234 PLTFMISSION Waypoint <cnt> 0 CRIEND

CRISTART 1234 PLTFMISSION SetWaypoint <idx> <definition> CRIEND

Adds a mission command after the specified index. -1 for first position, bigger

or equal to the command count for the end.

4.19 Sensor Commands

CRISTART 1234 SENSOR ListSensors CRIEND

Requests the list of available sensor from the CRI-Server. The server replies

with

CRISTART 1234 INFO SensorList <count> <name1> <type1> <name2> <type2> … CRIEND

Where <count> is the number of available sensors, <nameX> is the name of sensor

number X and <typeX> is the type of sensor number X. Currently these types are

defined:

0 Contoursensor

1 Pointcloudsensor

4.20 Audio Commands

CRISTART 1234 AUDIO ListWaves CRIEND

Requests the list of available wave files from the CRI-Server. The server

replies with

CRISTART 1234 INFO Waves <name1> <name2> <type2> … CRIEND

Where <nameX> is the name of wave number X. Please note, that these are the

names (from the Name attribute in audio.xml) of the sounds, not their

filenames.

© Commonplace Robotics GmbH 30

